首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As nanoparticle syntheses in aqueous and organic systems have their own merits and drawbacks, specific applications may call for the transfer of newly formed nanoparticles from a polar to a non-polar environment (or vice versa) after synthesis. This critical review focuses on the application of phase transfer in nanoparticle synthesis, and features core-shell structures in bimetallic nanoparticles, replacement reactions in organic media, and catalytic properties of various nanostructures. It also describes the reversible organic and aqueous phase transfer of semiconductor and metallic nanoparticles for biological applications, and the use of phase transfer in depositing noble metals on semiconductor nanoparticles (258 references).  相似文献   

2.
Double cohesion has proved to be a useful tool to assemble robust 2D arrays of large tiles. Here we present a variety of examples showing the utility of this approach. We apply this principle to the 3 types of 2D lattice sections of arrays whose individual tiles are inherently 3 dimensional, because they contain three vectors that span 3-space. This application includes motifs which are based on the tensegrity triangle, the six-helix bundle motif and on three skewed triple crossover molecules. All of these designs have the potential to form 3 dimensional structures if all three directions of propagation are allowed. If one direction is blunted, 2D arrays form, and all 3 combinations are presented here. In addition, a large parallelogram array that was not attainable previously using single duplex cohesion was also constructed using double cohesion. For comparison, arrays which use another type of double cohesion, double paranemic (PX) cohesion are also presented. Double cohesion of sticky ends proved to be the more effective tool to assemble large motifs into arrays.  相似文献   

3.
4.
纳米技术在高性能电力复合绝缘材料中的工程应用   总被引:3,自引:0,他引:3  
超高压、特高压输电网络是国家电网正在全力打造的统一坚强智能电网的骨架和核心,对于提升我国输电水平和节能具有重要意义.本文结合研究团队在纳米改性绝缘材料方面的工作积累,综述了纳米技术在高性能复合绝缘材料与防护中的工程应用进展.  相似文献   

5.
Polymeric metal complexes exhibiting useful properties were prepared by chelating macroligands to labile and inert metal ions. The specific structures elucidated through this method, as well as potential applications for these complexes are described. By carefully selecting the appropriate metal ion and polymer, these materials can be tuned for a host of applications in fields ranging from biomedicine to nanotechnology.  相似文献   

6.
A critical review: the ring-opening polymerization of cyclic esters provides access to an array of biodegradable, bioassimilable and renewable polymeric materials. Building these aliphatic polyester polymers into larger macromolecular frameworks provides further control over polymer characteristics and opens up unique applications. Polymer stars, where multiple arms radiate from a single core molecule, have found particular utility in the areas of drug delivery and nanotechnology. A challenge in this field is in understanding the impact of altering synthetic variables on polymer properties. We review the synthesis and characterization of aliphatic polyester polymer stars, focusing on polymers originating from lactide, ε-caprolactone, glycolide, β-butyrolactone and trimethylene carbonate monomers and their copolymers including coverage of polyester miktoarm star copolymers. These macromolecular materials are further categorized by core molecules, catalysts employed, self-assembly and degradation properties and the resulting fields of application (262 references).  相似文献   

7.
BACKGROUND: Multiple-stranded DNA assemblies, encoded by sequence, have been constructed in an effort to self-assemble nanodevices of defined molecular architecture. Double-helical DNA has been probed also as a molecular medium for charge transport. Conductivity studies suggest that DNA displays semiconductor properties, whereas biochemical studies have shown that oxidative damage to B-DNA at the 5'-G of a 5'-GG-3' doublet can occur by charge transport through DNA up to 20 nm from a photo-excited metallointercalator. The possible application of DNA assemblies, in particular double crossover (DX) molecules, in electrical nanodevices prompted the design of a DNA DX assembly with oxidatively sensitive guanine moieties and a tethered rhodium photo-oxidant strategically placed to probe charge transport. RESULTS: DX assemblies support long-range charge transport selectively down the base stack bearing the intercalated photo-oxidant. Despite tight packing, no electron transfer (ET) crossover to the adjacent base stack is observed. Moreover, the base stack of a DX assembly is well-coupled and less susceptible than duplex DNA to stacking perturbations. Introducing a double mismatch along the path for charge transport entirely disrupts long-range ET in duplex DNA, but only marginally decreases it in the analogous stack within DX molecules. CONCLUSIONS: The path for charge transport in a DX DNA assembly is determined directly by base stacking. As a result, the two closely packed stacks within this assembly are electronically insulated from one another. Therefore, DX DNA assemblies may serve as robust, insulated conduits for charge transport in nanoscale devices.  相似文献   

8.
Seeman NC 《Chemistry & biology》2003,10(12):1151-1159
Structural DNA nanotechnology consists of combining unusual DNA motifs by specific structurally well-defined cohesive interactions (primarily sticky ends) to produce target materials with predictable 3D structures. This effort has generated DNA polyhedral catenanes, robust nanomechanical devices, and a variety of periodic arrays in two dimensions. The system has been used to produce specific patterns on the mesoscale through designing and combining specific DNA strands, which are then examined by atomic force microscopy. The combination of these constructions with other chemical components is expected to contribute to the development of nanoelectronics, nanorobotics, and smart materials. The organizational capabilities of structural DNA nanotechnology are just beginning to be explored, and the field is expected ultimately to be able to organize a variety of species that will lead to exciting and possibly revolutionary materials.  相似文献   

9.
We used high-resolution quasielastic neutron scattering spectroscopy to study the single-particle dynamics of water molecules on the surface of hydrated DNA samples. Both H(2)O and D(2)O hydrated samples were measured. The contribution of scattering from DNA is subtracted out by taking the difference of the signals between the two samples. The measurement was made at a series of temperatures from 270 down to 185 K. The relaxing-cage model was used to analyze the quasielastic spectra. This allowed us to extract a Q-independent average translational relaxation time of water molecules as a function of temperature. We observe clear evidence of a fragile-to-strong dynamic crossover (FSC) at T(L)=222+/-2 K by plotting log versus T. The coincidence of the dynamic transition temperature T(c) of DNA, signaling the onset of anharmonic molecular motion, and the FSC temperature T(L) of the hydration water suggests that the change of mobility of the hydration water molecules across T(L) drives the dynamic transition in DNA.  相似文献   

10.
Probing the structure of DNA aptamers with a classic heterocycle   总被引:1,自引:0,他引:1  
DNA aptamers are synthetic, single-stranded DNA oligonucleotides selected by SELEX methods for their binding with specific ligands. Here we present ethidium binding results for three related DNA aptamers (PDB code: 1OLD, 1DB6, and 2ARG)that bind L-argininamide (L-Arm). The ligand bound form of each aptamer's structure has been reported and each are found to be composed primarily of two domains consisting of a stem helical region and a loop domain that forms a binding pocket for the cognate ligand. Previous thermodynamic experiments demonstrated that the DNA aptamer 1OLD undergoes a large conformational ordering upon binding to L-Arm. Here we extend those linkage binding studies by examining the binding of the heterocyclic intercalator ethidium to each of the three aptamers by fluorescence and absorption spectrophotometric titrations. Our results reveal that ethidium binds to each aptamer with DeltaG degree's in the range of -8.7 to -9.4 kcal/mol. The stoichiometry of binding is 2:1 for each aptamer and is quantitatively diminished in the presence of L-Arm as is the overall fluorescence intensity of ethidium. Together, these results demonstrate that a portion of the bound ethidium is excluded from the aptamer in the presence of a saturating amount of L-Arm. These results demonstrate the utility of ethidium and related compounds for the probing of non-conventional DNA structures and reveal an interesting fundamental thermodynamic linkage in DNA aptamers. Results are discussed in the context of the thermodynamic stability and structure of each of the aptamers examined.  相似文献   

11.
The forced extension of a DNA segment is studied in a series of steered molecular dynamics simulations, employing a broad range of pulling forces. Throughout the entire force range, the formation of a zipper-like (zip-) DNA structure is observed. In that structure, first predicted by Lohikoski et al., the bases of the DNA strands interdigitate with each other and form a single-base aromatic stack. Similar motifs, albeit only a few base pairs in extent, have been observed in experimental crystal structures. Analysis of the dynamics of structural changes in pulled DNA shows that S-form DNA, thought to be adopted by DNA under applied force, serves as an intermediate between B-DNA and zip-DNA. Therefore, the phase transition plateau observed in force-extension curves of DNA is suggested to reflect the B-DNA to zip-DNA structural transition. Electronic structure analysis of purine bases in zip-DNA indicates a several-fold to order of magnitude increase in the π-π electronic coupling among nearest-neighbor nucleobases, compared to B-DNA. We further observe that zip-DNA does not require base pair complementarity between DNA strands, and we predict that the increased electronic coupling in zip-DNA will result in a much higher rate of charge transfer through an all-purine zip-DNA compared to B-DNA of equal length.  相似文献   

12.
Crossover of mesophase to crystalline structure in the nanoconfinement crystallization process of frustrated side groups elucidates the critical crystal thickness d(c) or the length scale of side groups, which defines the transition process from mesophase (hexagonal and monoclinic phase) to crystalline phase (orthorhombic phase) of confined CH(2) sequences in a given crystal size restriction.  相似文献   

13.
14.
The rapid increase in experimental data along with recent progress in computational methods has brought modern biology a step closer toward solving one of the most challenging problems: prediction of protein function. Comprehension of protein function at its most basic level requires understanding of molecular interactions. Currently, it is becoming universally accepted that the scale of the accumulated data for analysis and for prediction necessitate highly efficient computational tools with appropriate application capabilities. The review presents the up-to-date advances in computational methods for structural pattern discovery and for prediction of molecular associations. We focus on their applications toward a range of biological problems and highlight the advantages of the combination of these methods and their integration with biological experiments. We provide examples, synergistically merging structural modeling, rigid and flexible structural alignment and detection of conserved structural patterns and docking (rigid and flexible with hinge-bending movements). We hope the review will lead to a broader utilization of computational methods, and their cross-fertilization with experiment.  相似文献   

15.
In principle, DNA-mediated charge transfer processes can be categorized as oxidative hole transfer and reductive electron transfer. With respect to the routes of DNA damage most of the past research has been focused on the investigation of oxidative hole transfer or transport. On the other hand, the transport or transfer of excess electrons has a large potential for biomedical applications, mainly for DNA chip technology.  相似文献   

16.
Three new compounds based on the cationic complex [Fe(III)(3-R-salEen)(2)]+ (salEen stands for N-(2-ethylamino)ethyl)-salicylaldimine, R = H, CH(3)O) with the electroactive Ni(dmit)(2) species as a counterion (dmit stands for 1,3-dithia-2-thione-4,5-dithiolato) have been synthesized and structurally and magnetically characterized. Compound 1 ([Ni(dmit)(2)][Fe(3-OMe-salEen)(2)]. CH(3)OH) shows an apparent hysteresis loop, due to an irreversible desolvatation process. Compound 2 ([Ni(dmit)(2)](NO(3))[Fe(salEen)(2)](2)) exhibits a gradual and incomplete spin transition. Compound 3 ([Ni(dmit)(2)](5)[Fe(salEen)(2)](2), 6CH(3)CN) is a fractional oxidation state complex, which behaves like a semiconductor and exhibits a gradual but complete spin transition between 300 and 4 K.  相似文献   

17.
This critical review summarizes progress of the rapidly developing and very active field of silatrane chemistry. The first part of the review deals with general synthetic approaches used to synthesize different silatranes. The most interesting feature of silatranes, i.e., variation of Si-N bond length on the basis of the axial substituent of Si, and other structural features, are described in the second part with special emphasis on crystallographic and theoretical studies. It is followed by a discussion on the reactivity of various silatranes. Silatranes have now gained acceptance for a wide variety of applications which are summarized in the last section of review. Some of them have extensive interest due to their medical use to heal wounds or stimulate hair-growth (pilotropic activity), biological properties, pharmacological properties e.g. antitumor, anticancer, antibacterial, anti-inflammatory, fungicidal activity, stimulating effect in animal production and seed germination effects. The review focuses on the extended potential of silatranes in sol-gel processes, mesoporous zeotypes, atomic force microscopy, commercial products such as adhesion promoters, polymer formation and rubber compositions. This critical review will be helpful for general researchers, experts, advanced undergraduates and newcomers working on silatrane chemistry as this review presents greater emphasis on synthesis and characterization, structural properties, reactivity and applications of silatranes in the field of biology, material science, sol-gel chemistry, pharmaceutics, agriculture and medicine (311 references).  相似文献   

18.
Structural DNA nanotechnology, an emerging technique that utilizes the nucleic acid molecule as generic polymer to programmably assemble well-defined and nano-sized architectures, holds great promise for new material synthesis and constructing functional nanodevices for different purposes. In the past three decades, rapid development of this technique has enabled the syntheses of hundreds and thousands of DNA nanostructures with various morphologies at different scales and dimensions. Among them, discrete three-dimensional (3D) DNA nanostructures not only represent the most advances in new material design, but also can serve as an excellent platform for many important applications. With precise spatial addressability and capability of arbitrary control over size, shape, and function, these nanostructures have drawn particular interests to scientists in different research fields. In this review article, we will briefly summarize the development regarding the synthesis of discrete DNA 3D nanostructures with various size, shape, geometry, and topology, including our previous work and recent progress by other groups. In detail, three methods majorly used to synthesize the DNA 3D objects will be introduced accordingly. Additionally, the principle, design rule, as well as pros and cons of each method will be highlighted. As functions of these discrete 3D nanostructures have drawn great interests to researchers, we will further discuss their cutting-edge applications in different areas, ranging from novel material synthesis, new device fabrication, and biomedical applications, etc. Lastly, challenges and outlook of these promising nanostructures will be given based on our point of view.  相似文献   

19.
Self-assembly of [Ag(CN)2]-, 3-cyanopyridine, and iron(II) gives triple interpenetration of three-dimensional spin crossover (SCO) networks with the NbO topology, which interact each other via argentophilic interactions. Superposition of the networks along the c-axis defines an infinite mosaic of trigonal and hexagonal cross-sectional tubes where water molecules are installed. The structural changes associated with the SCO tune the homoatomic interactions and induce an uncommon change of the lattice volume.  相似文献   

20.
Micrometer-sized Fe3O4 particles and nano-sized gold particles were first synthesized by methods of self-aggregation of surface-chemically modified Fe3O4 nanoparticles and citrate reduction of the Au3 to Au0, respectively. Interaction between these two types of particles resulted in the assembly of nano-sized gold particles on the surface of the micrometer-sized Fe3O4 particles, forming an assembled structure with the Fe3O4 core particles around which are attached nano-sized gold parti- cles. The Fe3O4/Au structure is named GoldMag particles with assembled structure. The synthetic process, structure, and magnetic property of the GoldMag particles were analyzed. GoldMag particles with assembled structure have an irregular shape, rough surface with a diameter of 2―3 μm. These particles exhibit the superparamagnetic property with saturated magnetization of 41 A·m2/kg. In a single step, antibodies could be readily immobilized onto the surface of the particles with a high binding capacity. The GoldMag particles can be used as a novel carrier in immunoassays. The maximum quantity of human IgG immobilized onto GoldMag particles was 330 μg/mg. In order to validate the quality of the GoldMag particles as immunoassay carriers, an immunoassay system was used. The relative amount of immobilized human IgG was measured by HRP-labeled anti human IgG. The coefficient of variation within parallel samples of each group was below 6% and the coefficient of variation of means between five groups carried out separately was below 7%. Based on the sandwich method, the Hepatitis B surface antigen (HBsAg) and interleukin-8 (IL-8) were also analyzed by qualitative and quantitative detection, respectively. The result indicated that the GoldMag particles with assembled structure were an ideal carrier in immunoassay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号