首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-branched dyes were synthesized using a truxene platform appropriately functionalized with iodo residues, the key step here being a controlled iodination process giving access to mono-, di-, tri- and hexa-derivatives. Conversion of the iodo compounds to the corresponding alkynes followed by cross-coupling with iodophenylindacenes catalysed by Pd(0) or with chloro-Pt(II) complexes catalysed by Cu(I) enabled the introduction of multiple chromophore/luminophore units. Both neutral and cationic species involving Pt(II) centres were obtained in excellent yields. Connection of ethynylpyrene units to boron within the hexa-grafted truxene Bodipys provided very efficient cascade singlet energy transfer from the pyrene to the yellow emitter. Irradiation in the truxene core also resulted in quantitative energy transfer to the organic dyes.  相似文献   

2.
High‐quality free‐standing poly(1H‐benzo[g]indole) (PBIn) films were synthesized electrochemically by direct anodic oxidation of 1H‐benzo[g]indole (BIn) in boron trifluoride diethyl etherate. PBIn films obtained from this medium showed good electrochemical behavior and better thermal stability with a conductivity of 0.29 S cm?1. PBIn films with low band gap value (1.59 eV) were insoluble in acetone and tetrahydrofuran. The structure and morphology of the polymer were studied by UV–vis, FTIR, and scanning electron microscopy, respectively. The results of quantum chemistry calculations and the spectroscopies of dedoped PBIn indicate that the polymerization of BIn mainly occurs via C(2) and C(5) position. The polymer film was compact with regular nanoparticles on the surface. Fluorescent spectral studies indicate that solid‐state PBIn film is a good yellow‐light‐emitter. Thermal stability of PBIn film is higher than poly(indole‐6‐carboxylic acid), poly(5‐formylindole), and polyindole. To the best of our knowledge, this is the first report on the electrosynthesis of free‐standing polyindole derivatives as yellow‐light‐emitter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2730–2738  相似文献   

3.
The development of thermally activated delayed fluorescence (TADF) emitters with orange–red emission still lags behind that of their blue, green, and yellow counterparts. Recent research to address this problem mainly focused on developing new acceptor units. There were few donor units designed especially for orange–red emitters. Herein, with benzothiophene fused to a diphenylacridine donor unit, a new donor moiety, namely, 5,5-diphenyl-5,13-dihydrobenzo[4,5]thieno[3,2-c]acridine (BTDPAc), was designed and synthesized. Benefiting from the strong electron-donating ability of the new donor moiety, a new TADF emitter, 2-[4′-(tert-butyl)(1,1′-biphenyl)-4-yl]-6-[5,5-diphenylbenzo[4,5]thieno[3,2-c]acridin-13(5H)-yl]-1H-benzo[de]isoquinoline-1,3(2H)-dione (BTDPAc-PhNAI), shows an orange–red emission with a maximum at 610 nm in dilute toluene solution. Also, with the help of the diphenyl rings of the donor unit, high photoluminescence quantum yields were achieved for BTDPAc-PhNAI over a wide concentration range. Consequently, an orange–red organic light-emitting diode based on BTDPAc-PhNAI achieved a high external quantum efficiency of nearly 20 %, which was comparable to state-of-the-art device performances with similar emission spectra.  相似文献   

4.
Luminescent materials consisting of boron clusters, such as carboranes, have attracted immense interest in recent years. In this study, luminescent organic–inorganic conjugated systems based on o‐carboranes directly bonded to electron‐donating and electron‐accepting π‐conjugated units were elaborated as novel optoelectronic materials. These o‐carborane derivatives simultaneously possessed aggregation‐induced emission (AIE) and thermally activated delayed fluorescence (TADF) capabilities, and showed strong yellow‐to‐red emissions with high photoluminescence quantum efficiencies of up to 97 % in their aggregated states or in solid neat films. Organic light‐emitting diodes utilizing these o‐carborane derivatives as a nondoped emission layer exhibited maximum external electroluminescence quantum efficiencies as high as 11 %, originating from TADF.  相似文献   

5.
Multi‐resonance induced by boron and nitrogen atoms in opposite resonance positions endows a thermally activated delayed fluorescence (MR‐TADF) emitter with a strikingly small full width at half maximum of only 26 nm and excellent photoluminescence quantum yield of up to 97.48 %. The introduction of a carbazole unit in the para position of the B‐substituted phenyl‐ring can significantly boost up the resonance effect without compromising the color fidelity, subsequently enhancing the performances of the corresponding pure blue TADF‐OLED, with an outstanding external quantum efficiency (EQE) up to 32.1 % and low efficiency roll‐off, making it one of the best TADF‐OLEDs in the blue region to date. Furthermore, utilizing this material as host for a yellow phosphorescent emitter, the device also shows a significantly reduced turn‐on voltage of 3.2 V and an EQEmax of 22.2 %.  相似文献   

6.
Optical absorption and photo-luminescence measurements were performed on a series of semiconducting polymers, based upon phenylene linkages, that have discrete emitter units. In these polymers, broken conjugation has been achieved in two ways: by introducing metalinkages between various numbers of para-connected aromatic groups or by severe steric distortion of a fully conjugated main chain. In either case, electronic states are localized on relatively small units, resulting in a large (π, π*) band gap. The band gap decreases with increasing emitter unit conjugation, as expected. Blue light emission was observed from these materials, with the peak emission wavelength red shifted (by greater than 1 eV on average) from the peak absorption. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
A novel conjugated polythiophene derivative with polymethacrylate attaching to the polymer backbone via an alkyl spacer was successfully synthesized. A methacrylate‐substituted thiophene monomer, 3‐(hexyl methacrylate)thiophene was prepared and polymerized by free radical polymerization, followed by an electrochemical polymerization. The resulting polymer as a yellow‐green‐light emitter, has potential applications in photoelectronics area.  相似文献   

8.
陈玉洁  谢明雪  冯卓  邓启良 《色谱》2017,35(12):1240-1244
以烯丙基三乙氧基硅烷与1-乙烯基-3-辛基咪唑溴盐离子液体为单体通过自由基聚合及溶胶-凝胶制备了有机-无机杂化聚离子液体材料。通过红外光谱和扫描电镜对所制备的杂化聚离子液体材料进行了表征,并考察了其对柠檬黄、日落黄、苋菜红以及诱惑红等常见染料的吸附性能。研究结果表明:所制备的聚离子液体材料对日落黄和诱惑红具有优异的吸附性能,其吸附容量分别为29.20和86.17 mg/g;当吸附时间为5 min时,该材料对诱惑红和日落黄的吸附分别达到平衡时吸附量的87.5%和72.8%,显示了较快的吸附速率。  相似文献   

9.
2-Aryl- and 2-alkyl-2-oxazolines have been polymerized to poly-(N-aroyl)aziridines and poly(N-acyl)aziridines, respectively, in the presence of boron trifluoride. The polymers obtained were glassy, light yellow resins with molecular weights ranging from 3500 to 7500 (35–50 oxazoline units per chain). The polymerization rates have been determined for several of these monomers. A polymerization mechanism is proposed.  相似文献   

10.
The engineering of photoactive arrays built from a flat, functionalized triazatruxene (TAT) platform is described. The primary synthetic strategy involved the step by step connection of one, two or three bis(thienyl)diketopyrrolopyrrole (DPP) modules. Subsequent bromination of the pendent thiophene ring was not selective and provided a mixture of regioisomers. However, selective grafting of boron dipyrromethene (Bodipy) units via Pd-catalysed cross couplings enabled the construction of TAT/DPP/Bodipy arrays. As well, direct coupling of two green F-Bodipy units to dibromoTAT provided a substrate suitable for reaction with hydroxyl-propargyl-substituted red Bodipy dyes to give ready access to O-Bodipy linked multichromophoric systems. All the new dyes displayed strong absorption in the near-UV and visible region of the solar spectra (400–750 nm), with intramolecular cascade energy transfer enabling photon concentration and fluorescence at approximately 740 nm.  相似文献   

11.
The simultaneous discrimination of Cys, Hcy, and GSH by a single probe is still an unmet challenge. The design and synthesis of a small molecule probe MeO‐BODIPY‐Cl (BODIPY=boron dipyrromethene) is presented, which can allow Cys, Hcy, and GSH to be simultaneously discriminated on the basis of three distinct fluorescence turn‐on responses. The probe reacts with these thiols to form sulfenyl‐substituted BODIPY, which is followed by intramolecular displacement to yield amino‐substituted BODIPY. The kinetic rate of the intramolecular displacement reaction determines the observed different sensing behavior. Therefore, the probe responds to Cys, Hcy, and GSH with fluorescence turn‐on colors of yellow, yellow and red, and red, respectively. With this promising feature in hand, the probe was successfully used in imaging of Cys, Hcy and GSH in living cells.  相似文献   

12.
We report the concise synthesis and chir(optical) properties of an azaborathia[9]helicene consisting of two thienoazaborole motifs. The key intermediate, a highly congested teraryl with nearly parallel isoquinoline moieties, was generated as a mixture of atropisomers upon fusion of the central thiophene ring of the dithienothiophene moiety. These diastereomers were characterized by single crystal X-ray analysis revealing intriguing interactions in the solid state. Subsequent insertion of boron into the aromatic scaffold via silicon-boron exchange involving triisopropylsilyl groups fixed the helical geometry, thereby establishing a novel method for the preparation of azaboroles. The ligand exchange at boron in the final step afforded the blue emitter displaying a fluorescence quantum yield of 0.17 in CH2Cl2 and excellent configurational stability. Detailed structural and theoretical investigation of unusual atropisomers and the helicene provide insights into their isomerization processes.  相似文献   

13.
A diboron compound with both 3-coordinate boron and 4-coordinate boron centers, (5-BMes2-2-ph-py)BMes2 (1) and its monoboron analogue, (2-ph-py)BMes2 (2) have been synthesized. Both compounds are luminescent but have a high sensitivity toward light. UV and ambient light cause both compounds to isomerize to 1a and 2a, respectively, via the formation of a C-C bond between a mesityl and the phenyl group, accompanied by a drastic color change from yellow or colorless to dark olive green or dark blue. The structures of 1a and 2a were established by 2D NMR experiments and geometry optimization by DFT calculations. Both 1a and 2a can thermally reverse back to 1 and 2 via the breaking of a C-C bond, with the activation barrier being 107 and 110 kJ/mol, respectively. The N,C-chelate ligands in 1 and 2 were found to play a key role in promoting this unusual and reversible photo-thermal isomerization process on a tetrahedral boron center. Reactions with oxygen molecules convert 1a and 2a to 5-BMes2-2-[(2-Mes)-ph]-pyridine (1b) and 2-(2-Mes)-ph-pyridine (2b), respectively.  相似文献   

14.
In spite of recent advances towards understanding the mechanism of firefly bioluminescence, there is no consensus about which oxyluciferin (OxyLH2) species are the red and yellow‐green emitters. The crystal structure of Luciola cruciata luciferase (LcLuc) revealed different conformations for the various steps of the bioluminescence reaction, with different degrees of polarity and rigidity of the active‐site microenvironment. In this study, these different conformations of luciferase (Luc) are simulated and their effects on the different chemical equilibria of OxyLH2 are investigated as a function of pH by means of density functional theory with the PBE0 functional. In particular, the thermodynamic properties and the absorption spectra of each species, as well as their relative stabilities in the ground and excited states, were computed in the different conformations of Luc. From the calculations it is possible to derive the acid dissociation and tautomeric constants, and the corresponding distribution diagrams. It is observed that the anionic keto form of OxyLH2 is both the red and the yellow‐green emitter. Consequently, the effect of Luc conformations on the structural and electronic properties of the Keto‐(?1) form are studied. Finally, insights into the Luc‐catalyzed light‐emitting reaction are derived from the calculations. The multicolor bioluminescence can be explained by interactions of the emitter with active‐site molecules, the effects of which on light emission are modulated by the internal dielectric constant of the different conformations. These interactions can suffer also from rearrangement due to entry of external solvent and changes in the protonation state of some amino acid residues and adenosine monophosphate (AMP).  相似文献   

15.
Efficient white light emitting polymers were synthesized based on poly(9,9-dioctylfluorene-co-dibenzothiophene-S,S-dioxide) as blue emitter and a bisphenylamine functionalized 2,1,3-benzothiadiazole (DPABT) as red emitter. It was found that the incorporation of hole-transporting carbazole moiety into polymer main chain could effectively reduce the hole injection barriers, which can lead to distinctly improved charge balance in the emissive layer. Additionally, the hole-transporting carbazole units may form efficient bipolar host with electron-transporting dibenzothiophene-S,S-dioxide units. The white light emitting diodes based on single polymer PFSOCzDPABT showed the maximum luminous efficiency of 3.3 cd/A with the maximum luminance of 10282 cd/m2 , and the luminous efficiency showed only 24% roll off at current density of 400 mA/cm2 . These Commission Internationale d’Enclairage (CIE) coordinates of the devices changed slightly with the driving voltages increasing from 8 V to 12 V, and were very close to National Television System Committee (NTSC) standard white light emission of (0.33, 0.33). The results indicated that the incorporating bipolar host and low band gap DPABT unit was a promising way to achieve efficient single white light emitting copolymers.  相似文献   

16.
Two analogues (1, 2) of free cholesterol and one analogue (3) of the immunosuppressive sphingolipid FTY720 containing a boron dipyrromethene chromophore (BODIPY) were synthesized. The synthetic routes involved preparation of boron dipyrromethene moieties (5, 11), bearing a phenylethynyl group at different positions of the chromophore, and lipids (13, 20) bearing an azido group. The dye was tethered to the lipid via a 1,2,3-triazole in the linker by the click reaction. Analogues derived from 11 [in which an (E)-styrylethynyl moiety is bonded to C-5 of BODIPY] exhibited a marked red shift (approximately 70-80 nm) compared with those derived from 5 (in which a phenylethynyl moiety is bonded to C-8 of BODIPY).  相似文献   

17.
High-performance deep-blue emitters with external quantum efficiencies (EQEs) exceeding 5 % are still scarce in organic light-emitting diodes (OLEDs). In this work, by introducing a [1,2,4]triazolo[1,5-a] pyridine (TP) unit at the N1 position of phenanthroimidazole (PI), two luminescent materials, PTPTPA and PTPTPA , were obtained. Systematic photophysical analysis showed that the TP block is suitable for constructing hybridized local and charge-transfer (HLCT) emitters. Its moderate electron-withdrawing ability and rigid planar structure can enhance the CT component while ensuring color purity. In addition, compared with PTPTPA , the additional phenyl ring of PTPBPTA not only increased the oscillator strength, but also decreased the Stokes shift. TDDFT calculations pointed out facile reverse intersystem crossing processes in PTPTPA from high-lying triplet states to the singlet excited state. A nondoped device based on PTPTPA as emitter showed impressive performance with EQEmax of 7.11 % and CIE coordinates of (0.15, 0.09). At the same time, it was also an efficient host for yellow and red phosphorescent OLEDs. By doping yellow (PPYBA) and red (BTPG) phosphorescent dyes into PTPTPA , a white OLED with a high EQE of 23.85 % was achieved. The successful design of PTPTPA not only provided an optimization choice for OLED emitters, but also demonstrated the empirical rules for the design of multifunctional deep-blue emitters.  相似文献   

18.
The reactions between M2(O2CtBu)4, where M=Mo or W, and thienyl-3,4-dicarboxylic acid (0.5-1.5 equiv) in toluene proceed via a series of detectable intermediates to the compounds M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6, which are isolated as air-sensitive yellow (M=Mo) or red (M=W) powders and show parent molecular ions in their mass spectra (MALDI). The structure of the molybdenum complex was determined by single-crystal X-ray crystallography and shown to contain an unusual M8 polygon involving four Mo2 quadruply bonded units linked via the agency of the six 3,4-thienylcarboxylate groups. The structure has crystallographically imposed S4 symmetry and may be described in terms of a highly distorted tetrahedron of Mo2 units or a bisphenoid in which two Mo2 units are linked by a thienyldicarboxylate such that intramolecular Mo2...O bonding is present, while the other thienylcarboxylate bridges merely serve to link these two [Mo2]...[Mo2] units together. The color of the compounds arises from intense M2 delta-to-thienyl pi transitions and, in THF, the complexes are redox-active and show four successive quasi-reversible oxidation waves. The [M8]+ radical cations, generated by one-electron oxidation with AgPF6, are shown to be valence-trapped (class II) by UV-vis-near-IR and electron paramagnetic resonance spectroscopy. These results are supported by the electronic structure calculations on model compounds M8(O2CH)4(mu-SC4H2-3,4-{CO}2)6 employing density functional theory that reveal only a small splitting of the M2 delta manifold via mixing with the 3,4-thienylcarboxylate pi system.  相似文献   

19.
Two series of multi-cascade scaffolds bearing a boradiazaindacene (yellow dye) or a boradibenzopyrromethene (green dye) as the final energy acceptor have been synthesized. Each scaffold contains one, two or three alkynylaryl energy donors (such as pyrene D1, perylene D2, and fluorene D3) linked to the boron center. Palladium-catalyzed cross-coupling of dihalogenated Bodipy starting material enabled the step-by-step construction of the different modules. In all cases, selective irradiation in each absorbing subunit resulted in efficient energy transfer over 25 Å to the Bodipy units.  相似文献   

20.
Twenty-five Brazilian species (nine genera: Phorinus, Photinoides, Macrolampis, Aspisoma, Cratomorphus, Amydetes, Photuris, Bicellonychia, Pyrogaster) of adult fireflies were found to emit light in vivo in the green-yellow range (Λmax=548–573 nm) of the spectrum, more frequently near the green region, in contrast with North-American species, which predominantly emit yellow light. Distinct ecological contexts where these species evolved, such as the habitat (open field vs forests) and the duration of twilight, are discussed as possible factors responsible for these differences. Except for Photuris and Bicellonychia spp., the in vivo and in vitro bioluminescence spectra for various species of a given genus agree within ±5 nm. Lowering the pH caused the typical red shift in the in vitro bioluminescence spectrum from lampyrid luciferases (six species), which has been interpreted as due to the presence of a basic residue in the enzyme active site catalyzing fast enolization of the initially formed excited keto-oxyluciferin (red emitter) to the excited enol form (yellow-green emitter). The in vitro bioluminescence colors obtained from larval or adult elaterid (five species) and phengodid (three species) luciferases studied here, spanning the green-red region, do not respond to pH changes. This could indicate either the absence of the neighboring basic center (in red-emitting luciferases) or the presence of a non-pH affected proximal basic residue in the active site of the luciferase (in yellow-green-emitting luciferases).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号