首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of neurite outgrowth of PC12 cells on collagen-coated glass plates under intermittent light irradiation at 525 nm and 0.4 mW/cm2 of intensity was investigated. Neurite outgrowth of PC12 cells was significantly suppressed when PC12 cells were cultivated under intermittent light irradiation with a total irradiation time of more than 2 min/h. No temperature increase was observed in the culture medium under either continuous or intermittent light irradiation. Therefore, suppression of neurite outgrowth under light irradiation was not due to the increase of temperature in the culture medium, but rather the effect of light on the PC12 cells, especially the signal transmittance of light to PC12 cells. The light irradiation interval also affected the neurite outgrowth of PC12 cells when the total irradiation time was constant. A high extension ratio of neurite outgrowth was observed under a long time interval of nonirradiation between light irradiations (1 min of irradiation every hour) as compared with frequent light irradiation intervals (5 s of irradiation every 5 min) with the same total irradiation period per hour. The neurite outgrowth ratio was thought to be dependent on the light intensity, the total time of light irradiation in the intermittent light irradiation, and the interval of light irradiation in the intermittent light irradiation.  相似文献   

2.
Ion beam irradiation was used to modify the surface of a sulfonated polysulfone water treatment membrane. A beam of 25 keV H (+) ions with four irradiation fluences (1 x 10 (13), 5 x 10 (13), 1 x 10 (14), and 5 x 10 (14) ions/cm (2)) was used to study the effects of ion beam irradiation on chemical structure, surface morphology, microstructure, and performance. XPS and ATR-FTIR analyses were performed on the virgin and irradiated membranes in order to determine the changes to chemical structure incurred by ion beam irradiation. The results showed that some sulfonic and C-H bonds were broken and new C-S bonds were formed after irradiation. AFM analysis showed that the roughness of the membranes decreased after irradiation, and the decrease in surface roughness was proportional to the increase in irradiation fluence. An increase in flux after ion beam irradiation was also observed along with a smaller flux decline during operation. Flux was not a function of irradiation fluence. Hydrophobicity, pore size distribution, and membrane rejection efficiencies were not affected by ion beam irradiation. Overall, irradiation led to an improvement in membrane performance.  相似文献   

3.
The red leaves of centipedegrass are known to produce compounds with stronger antibiotic effects than those produced by green leaves. Therefore, the aim of this study was to identify if stress methods (e.g., gamma irradiation, UV-B irradiation, and wounding) could effectively convert green leaves to red leaves, and thereby increase the production of maysin and maysin derivatives that have been known for antibiotic properties. Our results showed differential concentration changes for different compounds using these stress methods. The concentrations of luteolin increased from 0.014% to 0.019%, 0.022%, and 0.028% following gamma irradiation, UV-B irradiation, and wounding, respectively. The concentration of isoorientin increased from 0.898% to 1.938% and 2.538%, while the concentration of mixed rhamnosylisoorientin and orientin increased from 0.303% to 0.474% and 0.690%, following UV-B irradiation and wounding, respectively. Gamma irradiation produced concentrations of isoorientin, rhamnosylisoorientin, and orientin similar to those found in red leaves. The concentrations of derhamnosylmaysin increased from 0.004% to 0.009%, 0.015%, and 0.024% by gamma irradiation, UV-B irradiation, and wounding, respectively. The concentration of maysin increased from 0.515% to 0.714%, 0.583%, and 0.777% by gamma irradiation, UV-B irradiation, and wounding, respectively, while the concentration of luteolin-6-C-boivinopyranoside increased from 0.324% to 0.834%, 0.979%, and 1.493% by gamma irradiation, UV-B irradiation, and wounding, respectively. According to these results, wounding and gamma irradiation are promising methods for increasing the concentrations of maysin and maysin derivatives.  相似文献   

4.
Adoption of the ICRU slab enables several dosimeters to be calibrated simultaneously. In order to allow use of identical conversion coefficients, these dosimeters should be exposed to the same irradiation conditions to within a given tolerance, account being taken of both incident and backscattered radiations. In the present study evaluation has been made of the variation in irradiation conditions for simultaneous irradiation of multiple numbers of TLDs, examination also being made of suitable gap sizes between TLDs. For simultaneous irradiation of four TLDs, a 5 cm gap is required to ensure approximate identical irradiation conditions. Approximate identical irradiation conditions have not been found possible when making simultaneous irradation of nine TLDs.  相似文献   

5.
将具有阻燃剂和辐照敏化剂双重功能的含烯丙基环三磷腈(CP-Allyl),通过熔融共混的方式引入到由低密度聚乙烯和乙烯-醋酸乙烯共聚物组成的基体中,制备了一系列基于有机-无机阻燃复配剂的新型无卤阻燃聚乙烯基复合绝缘材料。进一步通过100~190 kGy剂量下的电子束辐照,实现了复合材料的辐照交联,并建立了辐照剂量与交联度以及材料性能的关系。研究结果表明,含有功能性环三磷腈衍生物的辐照交联复合材料具有优良的力学强度、阻燃性和电绝缘性能。力学强度在14.5 MPa以上,极限氧指数为28.2%~32.4%,电阻达到2.47×1012Ω以上,因而有希望在电线电缆领域获得应用。  相似文献   

6.
在TiO2悬浮体系下,采用对甲基苯磺酸模拟废水进行半导体光催化氧化降解静态试验;利用正交试验研究了光催化氧化降解的主要影响因素(pH值、催化剂用量、光照强度、光照时间).结果表明:在一定条件下,催化剂投加量、溶液pH、照射光强度及光照时间均存在一个最佳值;依据其影响对甲基苯磺酸废水光催化降解反应的大小,各因素排列顺序为:光照时间(光照强度(初始pH(催化剂用量.在试验最佳条件下(pH=3,催化剂用量80 mg.L-1,光照强度500 W,光照时间120 min),对甲基苯磺酸能够完全降解.  相似文献   

7.
For polypropylene of varied stabilization, spectral sensitivity as well as temperature dependence of irradiation caused crack formation was determined in artificial irradiation tests. UV radiant exposure HUV necessary to generate crack formation was measured both in spectrally dispersed irradiation and artificial irradiation in a Fluorescent UV lamp device. Dependencies were fitted to a plateau function and an Arrhenius function, respectively, to describe the action of irradiation by response functions. Applied to weather data from Phoenix, the results were compared with respective outdoor exposure results.  相似文献   

8.
Ion beam irradiation was used to modify the surface of a sulfonated polysulfone water treatment membrane. A beam of 25 keV H+ ions with three irradiation fluences (1 × 1013 ions/cm2, 5 × 1013 ions/cm2, and 1 × 1014 ions/cm2) was used for membrane irradiation. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analyses were performed on the virgin and irradiated membranes in order to determine the changes to chemical structure incurred by ion beam irradiation. The results show that some of the sulphonic and CH bonds were broken and new CS bonds were formed after irradiation. Atomic force microscope (AFM) analyses show that membrane roughness decreased after irradiation. A significant increase in flux after ion beam irradiation was also observed, while the amount of cake accumulation on the membrane was decreased after ion beam irradiation. Hydrophobicity, pore size distribution and selectivity of the membrane were not affected by ion beam irradiation.  相似文献   

9.
Polymeric composite manufacturing is a large, rapidly growing and energy consuming industry, where there is an obvious and compelling need for innovative curing technologies conforming to energy efficiency and environmental protection trends. This has led to many research efforts to consider, or in some cases re‐consider, irradiation curing of polymer composites. However, there is still a stifling lack of knowledge of the fundamental mechanisms to obtain homogeneity in the irradiation curing of composites. The key issue of the irradiation curing process, i.e. homogeneous curing affected by electron beam dose and initiator concentration for an epoxy resin is the focus of this paper. The temperature profiles, microstructure, curing degree gradient, and thermomechanical properties of electron beam‐ irradiated epoxy resin were profiled and analyzed, and the results indicated that curing degree in the epoxy resin showed a relatively steady region and an accelerated decrease along the depth direction. It is revealed that there existed an optimal range of concentration of the initiator for irradiation curing of an epoxy resin system. The inhomogeneity in the irradiation‐induced crosslinking structure could be abated by adopting the properly applied irradiation energy and the matching between the irradiation dose and the concentration of the initiator. It can be deduced that for most of the composite products with large thickness, layer upon layer irradiation or irradiation from two sides could be more efficient to obtain a homogeneous crosslinking structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
将微波辐射用于非水相酶催化可以获得很多有别于常规加热下的反应结果。本文讨论了微波的非热效应在酶促反应中的表现,探讨了微波辐射对酶的结构、构象、活性及酶催化反应动力学的影响,以及微波辐射-酶耦合催化对反应的对映选择性、底物专一性、前手性选择性和区域选择性的影响。在大多数场合,适当的微波辐射不会损伤酶活而且可以提高反应速率,而对酶特异性的影响则不一而论。  相似文献   

11.
Daily values of solar global ultraviolet (UV) B and UVA irradiation as well as erythemal irradiation have been parameterized to be estimated from pyranometer measurements of daily global and diffuse irradiation as well as from atmospheric column ozone. Data recorded at the Meteorological Observatory Potsdam (52 degrees N, 107 m asl) in Germany over the time period 1997-2000 have been used to derive sets of regression coefficients. The validation of the method against independent data sets of measured UV irradiation shows that the parameterization provides a gain of information for UVB, UVA and erythemal irradiation referring to their averages. A comparison between parameterized daily UV irradiation and independent values of UV irradiation measured at a mountain station in southern Germany (Meteorological Observatory Hohenpeissenberg at 48 degrees N, 977 m asl) indicates that the parameterization also holds even under completely different climatic conditions. On a long-term average (1953-2000), parameterized annual UV irradiation values are 15% and 21% higher for UVA and UVB, respectively, at Hohenpeissenberg than they are at Potsdam. Daily global and diffuse irradiation measured at 28 weather stations of the Deutscher Wetterdienst German Radiation Network and grid values of column ozone from the EPTOMS satellite experiment served as inputs to calculate the estimates of the spatial distribution of daily and annual values of UV irradiation across Germany. Using daily values of global and diffuse irradiation recorded at Potsdam since 1937 as well as atmospheric column ozone measured since 1964 at the same site, estimates of daily and annual UV irradiation have been derived for this site over the period from 1937 through 2000, which include the effects of changes in cloudiness, in aerosols and, at least for the period of ozone measurements from 1964 to 2000, in atmospheric ozone. It is shown that the extremely low ozone values observed mainly after the eruption of Mt. Pinatubo in 1991 have substantially enhanced UVB irradiation in the first half of the 1990s. According to the measurements and calculations, the nonlinear long-term changes observed between 1968 and 2000 amount to +4%, ..., +5% for annual global irradiation and UVA irradiation mainly because of changing cloudiness and + 14%, ..., +15% for UVB and erythemal irradiation because of both changing cloudiness and decreasing column ozone. At the mountain site, Hohenpeissenberg, measured global irradiation and parameterized UVA irradiation decreased during the same time period by -3%, ..., -4%, probably because of the enhanced occurrence and increasing optical thickness of clouds, whereas UVB and erythemal irradiation derived by the parameterization have increased by +3%, ..., +4% because of the combined effect of clouds and decreasing ozone. The parameterizations described here should be applicable to other regions with similar atmospheric and geographic conditions, whereas for regions with significantly different climatic conditions, such as high mountainous areas and arctic or tropical regions, the representativeness of the regression coefficients would have to be approved. It is emphasized here that parameterizations, as the one described in this article, cannot replace measurements of solar UV radiation, but they can use existing measurements of solar global and diffuse radiation as well as data on atmospheric ozone to provide estimates of UV irradiation in regions and over time periods for which UV measurements are not available.  相似文献   

12.
A Belousov–Zhabotinsky reaction in a pendant drop under microwave radiation was observed under nonstirring conditions. The period decreased as the irradiation power and time were increased because the droplet temperature increased. Moreover, the color change of the solution during the oscillatory reaction depended on the irradiation power and time although the droplet temperature returned to room temperature quickly. Irradiation at higher powers or longer times suspended the oscillatory reaction. However, for moderate irradiation powers or times, the oscillatory reaction stopped after irradiation because the concentration distribution of the reagents became homogeneous. After a time, the oscillatory reaction restarted because a concentration gradient developed again. Accordingly, the effect of the microwave irradiation history continued because the oscillatory reaction stopped even after the irradiation was stopped. This is because the rotation of the polar molecule caused by the irradiation produced a flat concentration distribution for the reagents through increased molecular diffusion.  相似文献   

13.
An investigation into the influence of UV irradiation on elastin hydrolysates dissolved in water was carried out using UV-Vis spectroscopy and spectrofluorometry. It was found that the absorption of elastin hydrolysates in solution increased during irradiation of the sample. For fluorescence of elastin hydrolysates we observed both, a decrease and increase of this value during irradiation of the sample. After UV irradiation of the elastin solution we observed a minor increase of overall absorption, most notably between 250 nm and 280 nm. Moreover, after UV irradiation a wide peak emerged between 290 nm and 310 nm with maximum at about 305 nm. The new peak suggests that new photoproducts are formed during UV irradiation of elastin hydrolysates. The fluorescence of elastin hydrolysates was observed at 305 nm and at 380 nm after excitation at 270 nm. UV irradiation caused fluorescence fading at 305 nm and 380 nm. After 30 min of irradiation a new broad weak band of fluorescence, attributable to new photoproducts, emerged in the UV wavelength region with emission maximum between 400 nm and 500 nm.  相似文献   

14.
Abstract— Ultraviolet B irradiation has been believed to decrease or impair the activity of reactive oxygen species (ROS) scavenging enzymes such as superoxide dismutase (SOD) in the skin. It has been recently reported that two isozymes of SOD, namely copper-zinc SOD (Cu-Zn SOD) and manganese SOD (Mn SOD), exist in mammalian cells and that the two enzymes play different roles in living systems. The aim of this study was to investigate changes in SOD activities and protein levels in cultured human keratinocytes after acute UVB irradiation. In addition, the protein levels of Cu-Zn SOD and Mn SOD were quantified separately. A single exposure to UVB irradiation produced an increase in SOD activity and protein level that peaked immediately after UVB irradiation, after which a decline was observed, with subsequent recovery to baseline levels 24 h after irradiation. In individual assays of Mn SOD and Cu-Zn SOD, the amount of Mn SOD protein decreased and then gradually recovered 24 h after irradiation. In contrast, the amount of Cu-Zn SOD protein increased immediately after UVB irradiation, and then gradually declined. To evaluate the mechanisms of these changes, we examined the effects of the cytokines, interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α), which can be secreted from keratinocytes after UVB irradiation, on the SOD activity and protein levels in keratinocytes. Interleukin-la and TNF-α enhanced both the SOD activity and protein level of Mn SOD, while these cytokines had no effect on Cu-Zn SOD protein levels in cultured human keratinocytes after incubation for 24 h. Furthermore, when neutralizing antibodies against IL-1α and TNF-α were added separately or together to the culture medium before UVB irradiation, the recovery of total SOD activity and Mn SOD protein level were markedly inhibited 24 h after irradiation. Our results suggest that significant increases in SOD activity and protein level occur as a cutaneous antioxidant defense mechanism that protects against the cytotoxicity as a result of UVB irradiation, and that this increase in SOD is attributed to Cu-Zn SOD. The Cu-Zn SOD and Mn SOD protein levels changed in a different manner after UVB irradiation. The former may participate in an early phase and the latter in a late phase defense mechanism directed against oxidant cytotoxicity through UVB irradiation. In addition, the recovery of Mn SOD to baseline levels 24 h after UVB irradiation seems to be mediated through cytokines such as IL-1α and TNF-α, which are secreted from keratinocytes.  相似文献   

15.
Mechanical and dynamic mechanical properties of natural rubber/recycled ethylene-propylene-diene rubber (NR/R-EPDM) blends were simultanoeusly enhanced by electron beam (EB) irradiation. The cross-linking promoter, trimethylolpropane triacrylate (TMPTA), was also introduced into the blends to induce the cross-linking. By applying EB irradiation, the tensile modulus, hardness, swelling, cross-link density, and storage modulus increased with increase in the irradiation dose; an irradiation dose of 50 kGy was efficient to gain optimum tensile strength. The formation of irradiation-induced cross-links after EB irradiation is a major concern for the enhancement of mechanical, swelling resistance, and dynamic mechanical properties of the blends.  相似文献   

16.
Effects of radiation on frozen lactate dehydrogenase   总被引:1,自引:0,他引:1  
Results concerning the influence of 6-MeV electron beam irradiation, of 2.45-GHz, 565-W microwaves, and of the combined electron and microwave irradiation, at -21 degrees C and -196 degrees C, on lactate dehydrogenase activity are presented. The microwave-irradiated samples exhibited a non-linear behaviour (successive activation and inactivation of the enzyme molecules), suggesting the major influence of the non-thermal component of microwave radiation. The combined electron and microwave irradiation led to a decrease of activity similar to the one caused by electron beam irradiation, which seemed to prove that microwave influence was insignificant in the dose, power and time ranges used. The radiation target analysis of the enzymatic decrease due to electron irradiation indicated a very large aggregation of the enzyme molecules. Our data suggest that radiation target analysis is not suitable to measure the molecular mass of lactate dehydrogenase, when frozen enzyme suspensions are irradiated. The D2O-protected enzyme, when exposed to electron irradiation, showed an even larger aggregation according to radiation target analysis, while the microwave irradiation of the protected enzyme led to a similar, though lesser, non-linear behaviour of the frozen enzyme molecules.  相似文献   

17.
To apply an irradiation technique to sterilize “Hybrid” biomedical materials including enzymes, we selected papain, a well-characterized plant endopeptidase as a model to examine durability of enzyme activity under the practical irradiation condition in which limited data were available for irradiation inactivation of enzymes. Dry powder and frozen aqueous solution of papain showed significant durability against 60Co-gamma irradiation suggesting that, the commercial irradiation sterilizing method is applicable without modification. Although irradiation of unfrozen aqueous papain solution showed an unusual change of the enzymatic activity with the increasing doses, and was totally inactivated at 15 kGy, we managed to keep the residual activity more than 50% of initial activity after 30-kGy irradiation, taking such optimum conditions as increasing enzyme concentration from 10 to 100 mg/ml and purging with N2 gas to suppress the formation of free radicals.  相似文献   

18.
Photoaging is induced by long‐term ultraviolet A (UVA) eye irradiation. However, the mechanism of skin damage due to UVA eye irradiation is still not well understood. In this study, we used C57BL/6j and gp91phox knockout (gp91phox?/?) mice for the long‐term effects of UVA irradiation. The eye or dorsal skin of the mice was locally exposed to UVA for 12 months. The reactive oxygen species (ROS), gp91phox, corticotropin‐releasing hormone (CRH), urocortin 2, and CRH receptor (CRHR) type 1 and type 2 levels in the brain and mast cell tryptase and histamine levels in the dorsal skin all increased after UVA irradiation. The levels of CRH, urocortin 2, CRHR type 1 and type 2 in the brain also increased more after UVA eye irradiation than after UVA skin irradiation. Moreover, photoaging of the UVA eye irradiation mice was not induced following the administration of a ROS inhibitor in the brain. In addition, in gp91phox?/? mice, photoaging by UVA eye irradiation was not induced. These results indicate that long‐term UVA eye irradiation led to increased gp91phox‐derived ROS in the brain and the increased expression of urocortin 2 and CRHR type 2, resulting in photoaging; however, further studies are needed to confirm these findings.  相似文献   

19.
In this study, the effects of an irradiation on the viscosity of the carboxymethylcellulose (CMC) solution were investigated, and the methods to control the degradation of the CMC caused by an irradiation were developed. The viscosity of the CMC solution was decreased with an increase in the irradiation dose, but the extent of the degradation by an irradiation was found to decrease with an increase in the CMC concentration in the solution. The dependency of the irradiation sources showed that an electron beam radiation had degraded the CMC less severely than a gamma ray radiation. An addition of vitamin C as a radical scavenger to the solution was shown to be effective in preventing the decrease of the viscosity of the solution. Also, in the case of an irradiation at −70 °C, the decrease of its viscosity was efficiently inhibited. The degradation of CMC in the solution was confirmed by the molecular weight distribution.  相似文献   

20.
微波辐照方式对CdS和Bi2S3纳米粒子结晶度的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
The effect of traveling microwave irradiation on the crystallinities of CdS nanoparticles and Bi2S3 nanorods was studied. Results showed that as compared with stationary microwave irradiation the crystallinities and the crystal growth of sulfide nanoparticles were improved. Traveling microwave irradiation can supply narrower frequency distribution and stronger power density of irradiation, CdS nanoparticles and Bi2S3 nanorods obtained are better in crystallinities and larger in size than under stationary microwave irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号