首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study was carried out to determine the minimum wet thickness of slot die coating for low-viscosity solutions. There exist three distinct coating regions (I, II, and III), depending on the physical properties of the coating fluid, die geometry, and flow conditions. A critical Reynolds number was found, below which viscous and surface tension effects are important. In Region I, the minimum wet thickness increases with increasing capillary number and becomes independent of capillary number in Region II. Region III exists above the critical Reynolds number where fluid inertia is dominant. In this region, the minimum wet thickness decreases as Reynolds number increases. Flow visualization on the coating bead reveals that the position of the downstream meniscus of the coating bead determines the types of coating region, whereas the shape and position of the upstream meniscus determine the type of coating defects. It was also observed that the downstream meniscus was not located at the die lip corner and both the static and dynamic contact angles varied under different conditions. These findings are critical for realistic theoretical study of slot die coating.  相似文献   

2.
We have studied the microscopic structure, thermodynamics of adsorption, and phase behavior of Lennard-Jones fluid in slitlike pores with walls modified due to preadsorption of chain molecules. The chain species are grafted at the walls by terminating segments. Our theoretical considerations are based on a density functional approach in the semigrand canonical ensemble. The applied constraint refers to the constant number of grafted chain molecules in the pore without restriction of the number of chains at each of the walls. We have observed capillary condensation of Lennard-Jones fluid combined with the change of the distribution of chains from nonsymmetric to symmetric with respect to the pore walls. The phase diagrams of the model are analyzed in detail, dependent on the pore width, length of chains, and grafted density.  相似文献   

3.
We propose a density functional theory to describe adsorption of Lennard-Jones fluid in slitlike pores modified by chain molecules. Specifically, the chains are bonded by their ends to the opposite pore walls, so they can form pillaredlike structure. Two models are studied. In the first model, the nonterminating segments of chains can change their configuration inside the pore upon adsorption of spherical species. In the second model, the chains configuration remains fixed, so that the system is similar to a nonuniform quenched-annealed mixture. We study capillary condensation of fluid species inside such modified pores and compare the results obtained for two models.  相似文献   

4.
Modified interfacial statistical associating fluid theory density functional theory is extended to tethered polymer chains in the absence or presence of free polymer chains. The structures of the "dry" and "wet" polymer brushes have been calculated and compared with simulation results available in the literature. The comparisons show that the theory accurately predicts the structure of the tethered polymer brush. The average brush heights calculated from the theory agree with well-established scaling theories for tethered polymers. However, these scaling theories cannot predict the detailed structure, accurately. The effects of the segment-segment interactions of the tethered polymer and the free polymer have been effectively captured by the theory.  相似文献   

5.
Capillary imbibition is an oil recovery mechanism in naturally fractured reservoirs if rock matrix is water wet and there is enough water in fractures in contact with matrix. It, however, may not yield an effective recovery under certain circumstances even if these conditions are maintained. Heavy matrix oil, high interfacial tension (IFT), oil-wet matrix sample, and limited contact area of matrix with water in fractures require additional effort to enhance the oil recovery by capillary imbibition. Chemicals and heat can be injected into naturally fractured reservoirs to improve the capillary imbibition recovery performance. With the involvement of low IFT fluid, heat, and polymer solution in the process, capillary imbibition dynamics may change and this entails an identification of the dynamics of the process through laboratory experiments before injection of these expensive fluids into oil reservoirs. In this study, the dynamics of capillary imbibition was studied experimentally. Static imbibition experiments were conducted on oil- and water-wet rock samples under different boundary conditions and saturated with different types of oil. The analyses were conducted using three indicators, namely the capillary imbibition rate, ultimate oil recovery, and shape of the recovery profile. Based on these indicators, the dynamics of capillary imbibition of different aqueous phases were evaluated for different oil types and matrix properties. The conditions that cause weak or strong capillary imbibition were identified.  相似文献   

6.
Experiments that illustrate and quantify the basics of co- and counter-current spontaneous imbibition have been conducted in a series of simple model pore systems. The fundamental pore geometry is a rod in an angled round-bottomed slot with the rod touching a capping glass plate. The capillaries thus formed by the surfaces of the slot, rod and plate do not have circular cross-sections but more complicated geometric structures with angular corners. The tubes formed at each side of the rod connect at both ends. A viscous, refined oil was applied from one end. For co-current experiments, the opposite end was left open to the atmosphere and oil imbibed into both tubes. For counter-current experiments the opposite end was sealed and connected to a sensitive pressure transducer. Oil imbibed into the smaller capillary and expelled air as a series of bubbles from the end of the larger capillary. Bubble snap-off was observed to be rate-dependent and occurred at a lower curvature than that of the cylindrical meniscus that just fits inside the tube. Only the corners of the larger capillary filled with oil during counter-current imbibition. Meniscus curvatures were calculated using the Mayer and Stowe-Princen method and were compared with actual values by measuring the capillary rise in the tubes; agreement was close. A simple model for co-current and counter-current imbibition has also been developed and the predictions compared with the experimental results. The model results were in agreement with the experiments. The experiments demonstrate that the capillary back pressure generated by the interfaces and bubbles in counter-current imbibition can slow the process significantly.  相似文献   

7.
The results obtained from molecular dynamics simulations of the friction at an interface between polymer melts and weakly attractive crystalline surfaces are reported. We consider a coarse-grained bead-spring model of linear chains with adjustable intrinsic stiffness. The structure and relaxation dynamics of polymer chains near interfaces are quantified by the radius of gyration and decay of the time autocorrelation function of the first normal mode. We found that the friction coefficient at small slip velocities exhibits a distinct maximum which appears due to shear-induced alignment of semiflexible chain segments in contact with solid walls. At large slip velocities, the friction coefficient is independent of the chain stiffness. The data for the friction coefficient and shear viscosity are used to elucidate main trends in the nonlinear shear rate dependence of the slip length. The influence of chain stiffness on the relationship between the friction coefficient and the structure factor in the first fluid layer is discussed.  相似文献   

8.
Kastantin M  Tirrell M 《Macromolecules》2011,44(12):4977-4987
This work considers the physics of a brush formed by polymers capable of undergoing a helix-coil transition. A self-consistent field approximation for strongly stretched polymer chains is used in combination with a lattice model of the interaction energy in helix-coil mixtures. Crowding-induced chain stretching stabilizes helix formation at moderate tethering densities while high tethering density causes sufficiently strong stretching to unravel segments of the helix, resulting in distinct layers of monomer density and helical content. Compared to a random-coil brush at low-to-moderate tethering density, a helicogenic brush is less resistant to compression in the direction perpendicular to stretching due to easy alignment of helices and fewer unfavorable interactions between helical segments. At higher tethering density, the abovementioned stretch-induced decrease in helical content resists further compression. The proposed model is useful for understanding an emerging class of biomaterials that utilize helix-forming polymer brushes to induce shape changes or to stabilize biofunctional helical peptide sequences.  相似文献   

9.
The aim of this work is to develop polycaprolactone based porous materials with improved mechanical performance to be used in bone repair. The hybrid membranes consist in a polymeric porous material in which the pore walls are coated by a silica thin layer. Silica coating increases membrane stiffness with respect to pure polymer but in addition filling the pores of the polymer with a silica phase improves bioactivity due to the delivery of silica ions in the neighborhood of the material in vivo. Nevertheless silica network, even that produced by sol–gel, might be too stiff and brittle what is not desirable for its performance as a coating. In this work we produced a toughened silica coating adding chitosan and 3-glycidoxypropyltrimethoxysilane (GPTMS) to the precursor solution looking for having polymer chains linked by covalent bonding to the silica network. Hybrid polymer–silica coating was produced by in situ sol–gel reaction using Tetraethyl orthosilicate (TEOS), GPTMS and chitosan. Chemical reaction between amine groups of chitosan chains and epoxy groups of GPTMS allowed covalent bonding of polymer chains to the silica network. Physical properties of the hybrid membranes were characterized and cell attachment of MC3T3-E1 pre-osteoblastic cells on the surface of these supports was assessed.  相似文献   

10.
A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.  相似文献   

11.
Surface properties of a series of cationic bottle-brush polyelectrolytes with 45-unit-long poly(ethylene oxide) side chains were investigated by phase modulated ellipsometry and surface force measurements. The evaluation of the adsorbed mass of polymer on mica by means of ellipsometry is complex due to the transparency of mica and its birefringence and low dielectric constant. We therefore employed a new method to overcome these difficulties. The charge and the poly(ethylene oxide) side chain density of the bottle-brush polymers were varied from zero charge density and one side chain per segment to one charge per segment and no side chains, thus spanning the realm from a neutral bottle-brush polymer, via a partly charged brush polyelectrolyte, to a linear fully charged polyelectrolyte. The adsorption properties depend crucially on the polymer architecture. A minimum charge density of the polymer is required to facilitate adsorption to the oppositely charged surface. The maximum adsorbed amount and the maximum side chain density at the surface are obtained for the polymer with 50% charged segments and the remaining 50% of the segments carrying poly(ethylene oxide) side chains. It is found that brushlike layers are formed when 25-50% of the segments carry poly(ethylene oxide) side chains. In this paper, we argue that the repulsion between the side chains results in an adsorbed layer that is non-homogeneous on the molecular level. As a result, not all side chains will contribute equally to the steric repulsion but some will be stretched along the surface rather than perpendicular to it. By comparison with linear polyelectrolytes, it will be shown that the presence of the side chains counteracts adsorption. This is due to the entropic penalty of confining the side chains to the surface region.  相似文献   

12.
A model of star-branched polymer chains confined in a slit formed by two parallel surfaces was studied. The chains were embedded to a simple cubic lattice and consisted of f=3 branches of equal length. The macromolecules had the excluded volume and the confining surfaces were impenetrable for polymer segments. No attractive interactions between polymer segments and then between polymer segments and the surfaces were assumed and therefore the system was a thermal. Monte Carlo simulations were carried out employing the sampling algorithm based on chain's local changes of conformation. Lateral diffusion of star-branched chains was studied. Dynamic properties of star-branched chains between the walls with impenetrable rod-like obstacles were also studied and compared to the previous case. The density profiles of polymer segments on the slit were determined. The analysis of contacts between the polymer chain and the surfaces was also carried out.  相似文献   

13.
We have performed classical density functional theory calculations to study the behavior of mixed polymer brushes tethered to a planar surface. We assume no lateral segregation of the polymer at the grafting density studied and consider an implicit solvent. For a binary mixture of short and long athermal polymer chains, the short chain is compressed while the long chain is stretched compared with corresponding pure polymer chains at the same grafting density, which is consistent with simulation. This results from configurational entropy effects. Furthermore, we add a mean-field interaction for each polymer brush to simulate their different response towards a solvent. The long chain is forced to dislike the solvent more than the short chain. Through the interplay between the solvent effects and configurational entropy effects, a switch of the polymer brush surface (or outer) layer is found with increasing chain length of the long chain. The transition chain length (long chain) increases with increasing the solvent selectivity, and decreases with increasing the grafting density of the long chain. These results can provide guidance for the design of smart materials based on mixed polymer brushes.  相似文献   

14.
We study capillary absorption of small polymer droplets into nonwettable capillaries using coarse-grained molecular dynamics simulations and a simple analytical model. Studies of droplets of simple fluids have revealed that the capillary process depends on the ratio of tube-to-droplet radii [Willmott Faraday Discuss., 2010, 146, 233; Marmur J. Colloid Interface Sci. 1988, 122, 209]. Here we consider the absorption of droplets of polymers and study the effect of polymer chain length on the capillary absorption process. Our simulations reveal that for droplets of the same size (radius), the critical tube radius, below which there is no absorption, increases with the length of the polymer chains that constitute the droplets. We propose a model to explain this effect, which incorporates an entropic penalty for polymer confinement and find that this model agrees quantitatively with the simulations. We also find that the absorption dynamics is sensitive to the polymer chain length. In some cases during the capillary uptake transient partial absorption states, where the droplet is partially in and partially out of the tube, were observed. Such dynamics cannot be explained by a generalized Lucas-Washburn approach.  相似文献   

15.
Polymer solutions subject to pressure driven flow and in nanoscale slit pores are systematically investigated using the dissipative particle dynamics approach. The authors investigated the effect of molecular weight, polymer concentration, and flow rate on the profiles across the channel of the fluid and polymer velocities, polymer density, and the three components of the polymers radius of gyration. They found that the mean streaming fluid velocity decreases as the polymer molecular weight and/or polymer concentration is increased, and that the deviation of the velocity profile from the parabolic profile is accentuated with increase in polymer molecular weight or concentration. They also found that the distribution of polymers conformation is highly anisotropic and nonuniform across the channel. The polymer density profile is also found to be nonuniform, exhibiting a local minimum in the center plane followed by two symmetric peaks. They found a migration of the polymer chains either from or toward the walls. For relatively long chains, as compared to the thickness of the slit, a migration toward the walls is observed. However, for relatively short chains, a migration away from the walls is observed.  相似文献   

16.
A large number of experimental results in the literature support and illuminate a model of behavior of chains and chain segments in the amorphous phase of semicrystalline polymers connecting the elevation of the glass transition temperature (Tg) above its normal value to several kinds of motional restrictions imposed on the chains and parts thereof. Accordingly, polymer chain, chain-segment and chain-fragment motions of all kinds comprise one or more torsions around main-chain bonds from one stable conformation to another, known as rotational isomerizations. When impediments are placed in front of thermal fluctuations and larger transversal and longitudinal motions of polymer chains, segments and shorter fragments in the amorphous phase, and the motions are thus restricted, the glass transition temperature is elevated relative to that of the same amorphous phase in the bulk under normal conditions. The obstructions may prevent either the onset of rotational isomerizations or of their completion once started. The completion of the torsional isomerizations and larger motions may be prevented by eliminating the free spaces necessary to accommodate the volumes of the interconverting chain fragments and segments even when they move in concert, or by preventing the creation of such free spaces. Another way to hinder the completion of such motions is by the introduction into the system of many rigid walls and other interfaces with strong attractive interactions with the polymer, that by geometrical constraints and attractive interactions suppress the rotational and larger motions and prevent their completion. Elimination of the necessary free volume is achievable by the application of compressive pressure, while the introduction of rigid attractive walls may be accomplished by the incorporation of crystallites, as in semicrystalline polymers, or by the addition of rigid finely comminuted foreign additives with very large surface areas or confining voids with high tortuosity. It is believed that motional restrictions imposed on the amorphous phase by the growth faces of polymer crystallites, especially in oriented semicrystalline polymers, are more effective than the restrictions imposed by the fold surfaces of these crystallites. The prevention of the onset of rotational isomerizations and larger motions may be achieved by stretching the polymer chains and chain segments in the amorphous phase and, by one means or another, pinning down the taut chains such that essentially all their rotational isomers are in the trans conformation: they cannot interconvert to the gauche conformation since it requires the chain’s end-to-end distance to decrease. Parallel alignment of relatively taut chain-segments may impose additional geometrical restrictions on both the onset and completion of rotational isomeric torsions and, of course, on longer-range motions. In all cases, the Tg of the motionally constrained parts of the amorphous phase, especially in semicrystalline polymers, is expected to rise. It is likely that the characteristic length associated with transversal motions and their suppression is Rc, the spatial distance between entanglements, which is of the same size scale, and may be the same as the tube diameter of the reptation model. Special emphasis was placed in this work on the semicrystalline polymers poly (ϵ-caprolactam) (nylon-6) and poly (ethylene terephthalate) (PET). © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
We study the equilibrium properties of flexible polymer chains confined in a soft tube by means of extensive Monte Carlo simulations. The tube wall is that of a single sheet six-coordinated self-avoiding tethered membrane. Our study assumes that there is no adsorption of the chain on the wall. By varying the length N of the polymer and the tube diameter D we examine the variation of the polymer gyration radius Rg and diffusion coefficient Ddiff in soft and rigid tubes of identical diameter and compare them to scaling theory predictions. We find that the swollen region of the soft tube surrounding the chain exhibits a cigarlike cylindrical shape for sufficiently narrow tubes with D相似文献   

18.
The phenomenon of spontaneous accumulation of macromolecules in pores from the dilute solutions of flexible polymers in poor solvent is studied using the density functional theory. It is shown that the partitioning of macromolecules between the bulk solution and slitlike pore, on whose walls the segments are predominantly adsorbed, depends on the ability of a semidilute polymer solution to wet the wall of a pore and on its size, as well as on the degree of undersaturation of bulk solution and temperature. Partitioning coefficient increases in a jumpwise manner when the surface first-order phase transition or capillary separation take place. It is revealed that the regularities of capillary separation of polymer solutions in a poor solvent are similar to those observed during the capillary condensation of unsaturated vapor. The applicability of the Kelvin equation to describe the conditions of capillary separation of flexible polymer solutions is analyzed.  相似文献   

19.
Summary: The influence of a lateral force (or lateral shear) acting on chains in a polymer brush is investigated theoretically. Brushes consisting of chains with temperature dependent anisotropic interactions between monomers (main‐chain mesogenic groups) are considered. It is shown that a lateral force applied to polymer brush induces its compression. In contrast to a conventional brush, the compression of brush, capable of forming a liquid crystalline (LC) state, can be caused by comparatively small shear forces. Moreover, such shear forces can induce a phase transition of a brush into the tilted LC state with a several‐fold decrease in brush thickness. These results allow us to predict a possibility to observe a decrease in brush thickness in a real experiment with reasonably values of shear rate.

Model of a chain in a polymer brush under an influence of lateral force p.  相似文献   


20.
Thin films of bromine‐terminated poly(bisphenol A octane ether) (BA‐C10) were prepared using 1,2‐dichlorobenzene (ODCB) as the solvent. The organization of the chains in these amorphous polymer films was evaluated using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) depth profiling. For the thin films, the bifunctional polymer chains were folded and anchored to the substrate via their two Br end groups and a polymer brush of chain loops was formed on the substrate. As the film thickness increased, polymer chains in a random coil conformation were found to reside on the top of the polymer brush. Depth profiling revealed that the polymer chains were densely packed at the interface. Moreover, the polymer films showed thermal stability, implying strong interactions between the end groups and the substrate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号