首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
以香豆素为基用以识别氟离子的新型比色化学传感器   总被引:2,自引:1,他引:1  
以香豆素作为发色团,胺基为氢键供体,以—C=N键桥连设计合成了可裸眼识别氟离子的化学传感器1,吸收光谱结果表明在乙腈中它可以高选择性识别氟离子,光谱红移70 nm,溶液颜色由橙色变为蓝紫色,而其它离子如Cl~-、Br~-、I~-、H_2PO_4~-、NO_3~-、HSO_4~-、AcO~-等均不影响其对氟离子的识别.通过核磁共振氢谱考察其识别机制,表明传感分子通过与F~-间的质子转移反应,使整个体系电子离域,分子内电荷转移更加显著,从而导致吸收光谱大幅红移.  相似文献   

2.
设计合成了新型的席夫碱探针2-羟基-1-萘甲醛缩-2-吡啶甲酰腙(L),通过红外、质谱、核磁氢谱和碳谱,对其结构予以了表征。利用紫外-可见吸收光谱研究了探针分子L对不同阴离子(F~-,Cl~-,Br~-,I~-,NO_3~-,CH_3COO~-,HSO_4~-,H_2PO_4~-,ClO_4~-)的识别性能,结果显示在乙腈体系中探针L对F~-具有单一选择性识别作用,可以实现对氟离子的裸眼识别。由Benesi-Hildebrand方程(采用紫外滴定光谱计算)显示,探针L与F~-以1:2的化学计量比稳定结合,二者的结合比为1.37×10~9(mol/L)~(-2),检测限为0.319μmol/L。采用~1H-NM R滴定实验研究了探针分子与氟离子的结合机理,结果表明探针L与氟离子先形成氢键然后发生去质子化过程,分子内电荷转移(ICT)是导致探针分子L和F~-作用后紫外-可见吸收光谱红移及颜色变深的主要原因。  相似文献   

3.
N-硝基脲类的合成及其阴离子识别研究   总被引:1,自引:0,他引:1  
合成了两种新型的阴离子识别受体N-硝基-N-(2,6-二硝基-4-三氟甲基苯基)-N'-(4-氯苯基)脲(受体1)和N-硝基-N-(2,6-二硝基-4-三氟甲基苯基)-N'-(4-甲基苯基)脲(受体2).利用紫外-可见吸收光谱考察了其与F-、Cl-、Br-、I-、H2PO4-、HPO42-、PO43-阴离子客体的识别作用.结果表明:在受体分子中加入F-、H2PO4-、HPO42-阴离子,其紫外-可见吸收光谱发生明显变化且溶液颜色由黄色变为紫色,而加入其他离子时无此现象.从而实现对这3种阴离子的裸眼检测.测定了结合物的结合比及结合常数.Job工作曲线表明受体与阴离子客体形成了1:1结合物.结合常数表明:同一受体对不同阴离子的选择性不同,受体分子1选择性HPO42- > H2PO4 > F-,受体分子2选择性HPO42- > F- > H2PO4;受体分子与同一阴离子客体的结合能力呈现规律性,1>2.提出了可能的结合模式.  相似文献   

4.
设计合成了含有酚羟基的BODIPY基荧光探针分子1,通过紫外-可见吸收光谱、荧光发射光谱和氢谱核磁滴定手段研究了探针分子1的阴离子识别与传感性能。研究发现探针分子1可以通过氢键作用选择性键合氟离子,而1-F-复合物可以作为硫酸氢根离子的关-开型荧光探针。探针分子1还可以进一步发展为氟离子和硫酸氢根离子调控的荧光分子开关。结合课堂教学和拓展阅读,使学生进一步了解了荧光分子开关的知识,培养了学生科研兴趣。  相似文献   

5.
设计合成了受体分子苯甲醛缩氨基硫脲,利用紫外-可见吸收光谱考察了在DMSO中对ClO3-,H2PO4-及CH3COO-的选择性识别作用,当加入H2PO4-或CH3COO-时,溶液颜色立刻由无色转变为黄色,而加入ClO3-阴离子则无变化,从而实现对此2种离子的裸眼检测。通过计算可知,由于阴离子碱性各异,受体分子对2种阴离子的识别作用呈现出有规律的变化,即CH3COO-H2PO4-;且主客体间形成1∶1的配合物。质子溶剂效应实验进一步证明了受体分子与阴离子之间以氢键作用方式相结合。  相似文献   

6.
李欠 《化学教育》2017,38(18):39-43
设计合成了含有酚羟基的萘吖嗪类荧光探针分子,利用紫外-可见吸收光谱和荧光发射光谱研究了探针分子的阴离子识别和光化学传感性能。研究结果表明,该探针分子可以通过比色(紫外-可见吸收光谱)和荧光发射光谱双通道识别检测氟离子。该探针分子是一类比率型阴离子荧光探针,作用方式为探针分子酚羟基的去质子化作用,这种激发态质子转移(ESIPT)是探针分子呈现比率荧光特性的原因。通过本实验不但可以让学生掌握紫外-可见吸收光谱和荧光发射光谱仪的使用方法,还能培养学生在分子识别与光化学传感领域的科研兴趣。  相似文献   

7.
高选择性氟离子识别受体的设计与识别机理   总被引:6,自引:0,他引:6  
郭琳  张煊  江云宝 《化学学报》2004,62(18):1811-1814
将酰胺识别基团耦合至基态具有分子内电荷转移特征的对硝基苯基偶氮苯胺分子中,设计合成了受体分子N-苯甲酰基4-(4'-硝基苯基偶氮基)苯胺(3),对氟离子表现出极高的识别选择性.乙腈中该受体3的最大吸收峰位于380 nm,加入氟离子后,该吸收峰强度逐渐减弱,同时在530 nm处出现新的吸收峰,后者为受体分子与氟离子形成的1:1配合物的吸收峰.溶剂极性效应实验表明,该吸收峰具有电荷转移特征.引入氟离子后受体3溶液的颜色由浅黄色转变为紫红色,可实现氟离子的裸眼检测.质子溶剂效应,1H NMR滴定为受体分子3与阴离子间的氢键作用本质提供了直接证据.  相似文献   

8.
本文设计合成了一种对硝基偶氮水杨醛吖嗪pH传感器S1。通过紫外可见分光光度法研究了传感器S1与八种不同阴离子的识别性能。通过向10%HEPES缓冲液(DMSO/HEPES=9∶1,V/V,pH=5.63)的S1中分别加入F~-、Cl~-、Br~-、I~-、AcO~-、SO_4~(2-)、NO_3~-、H_2PO_4~-等阴离子后,发现F~-、AcO~-、H_2PO_4~-的加入使得S1在584、614、622nm处的吸收峰增强,溶液颜色由淡黄色转变为蓝色,同时其它离子的加入无上述现象。Job曲线测定了S1与F~-、AcO~-、H_2PO_4~-的化学计量比均为1∶1,及最低检测限分别为0.39,2.60和12.5μM。通过布朗斯特酸碱反应及密度泛函理论计算说明S1与F~-、AcO~-、H_2PO_4~-之间可能是脱质子化作用。由此可见传感器S1在溶液体系中是一种颜色可调的可视化传感器。  相似文献   

9.
刘阁  邵杰 《无机化学学报》2011,27(4):731-736
设计合成了一种基于4-甲基-1-羟基二苯甲酮对硝基苯腙的比色和比率荧光阴离子受体1。此类受体以羟基和腙单元为识别位点,以硝基苯基为信号报告基团。向受体1的DMSO溶液中加入AcO-、H2PO4-、F-后,溶液颜色由黄色变为紫红色,而加入所研究的其它阴离子则无变化,从而实现对AcO-、H2PO4-、F-这三种离子的裸眼识别。利用紫外-可见吸收光谱、荧光光谱考察了其与AcO-,H2PO4-,F-,Cl-,Br-,I-等阴离子的识别作用。1H NMR滴定为受体分子与阴离子之间氢键作用本质提供了有力证据。  相似文献   

10.
设计合成了一种新型咪唑并吩嗪内酰胺荧光传感器分子(S1),通过核磁共振氢谱、碳谱和高分辨质谱等手段对其结构进行了表征,并测定了S1在二甲基亚砜(DMSO)溶液中的荧光光谱,其最大荧光发射波长为524 nm.S1的DMSO溶液具有亮黄色荧光.当在S1的DMSO溶液中分别加入F~-,Cl~-,Br~-,I~-,AcO~-,H_2PO_4~-,HSO_4~-,ClO_4~-和SCN~-等阴离子后,发现只有CN~-的加入使S1的荧光光谱出现明显的下降并发生红移.其溶液荧光颜色由黄色变为橘红色,说明S1对CN~-具有良好的专一选择性.抗干扰实验结果表明,这一识别过程不受其它阴离子干扰.通过计算得到,S1对CN-的荧光光谱最低检测限为9.96×10~(-7)mol/L,这一数值低于世界卫生组织所规定的饮用水中氰离子含量.机理研究表明,S1是一种反应型识别CN~-的荧光传感器.此外,将S1负载于固态硅胶之上,制备成固体CN~-识别材料,并成功用于对固体NaCN的识别和对CN~-水溶液的检测.  相似文献   

11.
喹啉类主体分子的设计合成与阴离子识别   总被引:12,自引:1,他引:11  
吴芳英  谭晓芳  胡美华  王宇晓 《化学学报》2004,62(15):1451-1454,FJ04
合成了系列 5 ( 8 羟基喹啉 )偶氮苯衍生物 ,研究了取代基对其吸收光谱的影响 ,比较了不同主体化合物对阴离子亲合能力的差异 .研究结果表明 :5 ( 8 羟基喹啉 )偶氮 4′ 甲基苯对F-具有选择性识别作用 ,主客体分子间形成 1∶1型阴离子配合物 ,其最大吸收波长为 5 0 8nm ,溶液颜色由无色变为红色 ,配合物的稳定常数为 2 5× 10 4mol-1·L .其它阴离子如AcO-,H2 PO-4,HSO-4,ClO-4,Cl-和Br-等均不影响主体与F-的显色反应 ,据此建立了选择性识别氟离子新体系 .  相似文献   

12.
设计合成了荧光传感分子水杨醛-4-甲氧基苯甲酰腙(SAMB),通过IR、1HNMR和元素分析确证了其结构,利用紫外-可见吸收光谱和荧光光谱考察了其对不同阳离子的识别作用。结果表明,SAMB的荧光发射对锌离子表现出高选择性响应,且形成1∶1型配合物。乙醇中锌离子的加入导致SAMB的荧光增强328倍,而其他过渡金属离子只引起SAMB的荧光的略微增强。初步探讨了受体分子与锌离子的结合模式与荧光增强机理。  相似文献   

13.
合成了含萘荧光基团的硝基取代苯腙类受体,利用紫外-可见分光光度法、荧光发射光谱法和核磁等方法研究了受体的阴离子识别与光化学传感性能. 结果表明,在DMSO有机溶剂体系中,单硝基取代受体选择性比色和荧光识别氟离子,而双硝基取代受体可以比色和荧光识别氟离子和醋酸根离子. 归因于腙=N-NH基团质子酸性的进一步增强,双硝基取代受体能够在DMSO-H2O体系中实现对氟离子的比色和荧光识别. 此类受体是有效的“off-on”型阴离子荧光传感分子.  相似文献   

14.
设计合成了新型缩氨基硫脲受体分子,利用紫外-可见吸收光谱考察了其对F-,Cl-,Br-,I-,CH3COO-,HSO4-,H2PO4-和NO3-8种阴离子的识别作用。当加入F-,CH3COO-,H2PO4-时,溶液颜色立刻由无色转变为黄色,而加入其它阴离子则无变化,从而实现对这3种阴离子的裸眼检测。通过计算可知,两种受体分子对CH3COO-和H2PO4-的识别作用呈现出有规律的变化,即对同种阴离子:受体B1受体B2,且主客体间形成1∶1的配合物。质子溶剂效应实验证明了受体分子与阴离子之间以氢键作用方式相结合。  相似文献   

15.
设计合成系列D-π-A偶氮苯酚探针,利用紫外-可见光谱对F~-、Cl~-、Br~-、I~-、HSO_4~-、H_2PO_4~-、NO_3~-和AcO~-阴离子进行识别,考察探针电子结构和空间位阻对F~-识别能力的影响。结果表明,在乙腈中P1~P4对F~-能选择性地识别,检测限达到0.10~0.63μmol·L~(-1)(1.90~11.97 ppm),探针分子与F~-形成的络合物共轭程度增大有利于对F~-识别,识别基团邻位取代基团空间位阻对F~-识别并不产生明显的影响。~1H NMR滴定表明识别机理为探针分子酚羟基与F~-通过氢键结合形成1∶1络合物。  相似文献   

16.
设计合成了一种含双腙类阴离子受体1(5-甲基双水杨醛-2,4-二硝基苯腙)。用紫外-可见吸收光谱、荧光光谱考察了其与AcO-,H2PO4-,F-,Cl-,Br-和I-阴离子的作用。当加入AcO-、F-和H2PO4-时,受体分子1的吸收光谱发生明显的红移,与此同时溶液颜色由浅粉色变为紫色,而加入其他阴离子则无变化。通过在DMSO-d6核磁滴定实验进一步研究受体1和F-相互作用的本质。  相似文献   

17.
设计合成了一系列基于羟基和氨基的酰腙类受体分子.利用紫外-可见吸收光谱及1HNMR考察了其与F-,Cl-,Br-,I-,CH3COO-,H2PO4?,HSO4?,ClO?4等阴离子的作用.结果表明,该类受体分子在DMSO溶液中能较好地比色识别F-,CH3COO-,H2PO4?,其中受体2在含水介质中[V(DMSO)∶V(H2O)=7∶3]能选择性比色识别CH3COO-.1HNMR滴定实验研究了受体分子与阴离子之间的作用,结果表明受体分子与阴离子之间以氢键作用方式相结合.  相似文献   

18.
本文设计合成了稀土铽配合物Tb(PMW)3(PhCA)作为阴离子试剂,利用荧光光谱考察了其与F-、Cl-、Br-、I-、ClO4-、NO3-、AcO-和H2PO-4等阴离子的作用.研究结果表明:不同阴离子的加入能够调控,Tb(PMIP)3(PhCA)的发光行为,当一定量的氟离子(醋酸根离子、磷酸二氢根离子)加入到Tb(PMIP)3(PhCA)的乙腈溶液中后,荧光发射增强;过量的氟离子(醋酸根离子、磷酸二氢根离子)加入后则使其荧光淬灭.而在乙腈和水混合溶液中,Tb(PMIP)3(PhCA)则能选择性识别氟离子和磷酸二氢根离子.  相似文献   

19.
本文设计合成了一种基于1-羟基-4-溴二苯甲酮对硝基苯腙(HBBP-对硝基苯腙)的比色阴离子受体1。此受体以羟基和腙单元为识别位点,以硝基苯基为信号报告基团。向受体1的DMSO溶液中加入AcO-、H2PO4-和F-的DMF后,溶液颜色由浅黄色变为棕红色,而加入所研究的其它阴离子则无变化或变化不大,从而实现受体对AcO-、H2PO4-和F- 这三种离子的裸眼识别。本文又利用紫外-可见吸收光谱、荧光光谱考察了其与AcO-、H2PO4-、F-、Cl-、Br-和I-阴离子的识别作用。  相似文献   

20.
设计并合成了5种呋喃并[3’,4’:5,6]吡啶并[2,3-c]吡唑受体分子, 利用紫外-可见吸收光谱考察了其与F-, Cl-, Br-, AcO-, 等阴离子的作用. 结果表明该类受体分子与阴离子形成氢键配合物, 导致呋喃并吡啶并吡唑受体的光谱发生变化. 测定了配合物的结合比和稳定常数, 发现受体化合物对F-, AcO-离子具有良好的选择性, 对其它多种阴离子无影响. Job曲线表明受体分子与阴离子间形成1∶1型的配合物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号