首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
锂空气电池的能量密度是传统锂离子电池的5~10倍,可与汽油相媲美。近几年来,锂空气电池因此受到了人们的广泛关注。本文概述了锂空气电池正极材料和电解液的最新研究进展。从商业碳、具有特定形态的碳材料、催化剂、导电聚合物等几个方面阐述了正极材料;从物质结构的角度,简要介绍了锂空气电池中常用的酯类、醚类、砜类、胺类和离子液体等电解液。最后指出了目前锂空气电池存在的问题,并对其进行了展望。  相似文献   

2.
锂空气电池的能量密度是传统锂离子电池的5~10倍, 可与汽油相媲美。近几年来, 锂空气电池因此受到了人们的广泛关注。本文概述了锂空气电池正极材料和电解液的最新研究进展。从商业碳、具有特定形态的碳材料、催化剂、导电聚合物几个方面阐述了正极材料;从物质结构的角度, 简要介绍了锂空气电池中常用的酯类、醚类、砜类、胺类和离子液体等电解液。最后指出了目前锂空气电池存在的问题, 并对其进行了展望。  相似文献   

3.
总结了近几年来锂硫电池正极材料的研究进展,简要阐释了锂硫电池正极材料的研究现状、存在的问题及其面临的挑战.通过碳材料的引入,导电聚合物的复合,金属氧化物的添加均不同程度地提高了硫电极材料的电导率,有效抑制了多硫化物的溶解,为体积膨胀提供了空间,从而改善了锂硫电池的活性物质利用率和循环稳定性.简化工艺,降低成本,提高硫的负载量,这将是下一阶段锂硫电池研究的重点.  相似文献   

4.
黄路露  孙凯玲  刘明瑞  李静  廖世军 《化学进展》2019,31(10):1406-1416
锂空气电池因其极高的理论能量密度和环境友好等优点,有望成为下一代车用动力电源体系。然而,目前锂空气电池尚存在许多的问题和挑战,就正极而言,空气电极活性低的问题已成为制约锂空气电池技术发展最为重要的问题,因此,开发高性能锂空气电池正极催化剂一直以来都是该领域的重要研究课题。碳基催化剂(正极材料)是目前最具吸引力的锂空气电池正极材料之一,近年来得到了广泛的关注和研究。本文总结和介绍了近年来国内外在多孔碳基材料、石墨烯基材料、掺杂碳材料等碳材料作为锂空气电池正极材料方面的进展,包括本课题组在非水系锂空气电池正极材料方面的研究工作,并对碳基正极材料的发展及其在锂空气电池中的应用前景做了展望。  相似文献   

5.
锂硫电池被认为是最有发展潜力的新型多电子反应的二次电池体系之一.单质硫与锂反应的理论比容量为1675 mA h g?1,质量比能量达2600 W h kg?1,远远高于现行的传统锂离子二次电池材料.同时硫又具有来源丰富、环境友好等优点.然而,仍然有许多问题制约了锂硫电池的发展与广泛应用.本文综述了近年来锂硫电池正极材料的研究进展.  相似文献   

6.
李鹏  孙彦平 《化学进展》2012,24(12):2457-2471
非水系二次锂-氧电池(NRLOB)在当前所研发的二次电池中理论能量密度最高,但存在循环性能差,充、放电电流密度低等显著问题;这些问题主要同其氧正极上的电化学反应相关,关键在于过氧化锂Li2O2可逆生成、分解反应能否在较高的速率下连续地进行。本文综述了近年来NRLOB正极电化学反应机理、正极碳材料、催化剂和电极结构、电解液分解导致电极副反应等方面的研究现状;归纳了今后需要进一步研究的主要问题。  相似文献   

7.
张松涛  郑明波  曹洁明  庞欢 《化学进展》2016,28(8):1148-1155
锂硫电池具有高的理论比容量和理论能量密度,被认为是当前最有前景的二次电池体系之一。现阶段锂硫电池的研究工作主要集中于高性能硫正极材料的设计与合成。具有优良的导电性、良好的结构稳定性和多孔结构的纳米碳材料,比如活性碳、介孔碳、超小微孔碳、多级结构多孔碳、空心碳球和空心碳纤维,充分满足了锂硫电池正极材料对碳基体的要求。本文综述了近年来多孔碳/硫复合材料作为硫正极的研究进展。总结了以具有不同结构特征的多孔碳基体负载硫组装的锂硫电池的电化学性能,并分析了不同多孔结构对性能的影响。最后在此基础上,从多孔碳/硫复合正极材料的设计和合成的角度,展望了其未来的发展趋势。  相似文献   

8.
碳基复合材料由于结构可变、形貌可调、成分可控,能够展现出优异的理化特性,在能源存储和转化领域具有极大的应用潜力.其中,锂-硫电池作为高效的能源存储和转化器件,长期受困于硫(S)和硫化锂(Li2S)绝缘的瓶颈,亟需开发高导电的储硫载体帮助锂-硫电池实现可逆充放电.研究表明,碳基复合材料具有强的导电能力,且可以通过表/界面...  相似文献   

9.
周兰  余爱水 《电化学》2015,21(3):211-220
二次锂硫电池被视为最具有发展潜力的下一代高能量密度二次电池之一. 但由于正极硫的电导率低(5×10-30 S·cm-1),且在放电过程中产生的中间体多硫化物易溶于有机电解液,致使锂硫电池活性物质利用率降低,溶解后的多硫化物还会迁移到负极,被还原成不溶物Li2S2/Li2S而沉积于负极锂,使电极结构遭受破坏,造成电池容量大幅衰减,循环性能差,从而限制了进一步的开发应用. 研究表明,以碳作为导电骨架的硫碳复合正极材料能在不同程度上解决上述问题,从而有效提高了锂硫电池的放电容量和循环性能. 本文综述了近年来国内外报道的各种锂硫电池正极材料的研究进展,结合作者课题组的研究,重点探讨了硫碳复合正极材料,并对其今后的发展趋势进行了展望.  相似文献   

10.
王诗文  高红鸽  郑淮阳  王放  罗河伟  吴诗德  张勇 《化学通报》2020,83(10):891-896,939
近年来,钒基氧化物因为种类众多、理论比容量高和倍率性能优异等优点,被认为是一类具有潜在应用价值的水系锌离子电池正极材料。本文综述了V2O5、VO2等钒基氧化物材料的结构特点及其作为水系锌离子电池正极材料的最近研究进展。重点概述了当前钒基氧化物在锌离子电池中所面临的关键问题以及应对策略;最后,对钒基氧化物储锌材料的发展方向进行了展望。  相似文献   

11.
锂离子电池正极材料层状Li-Ni-Co-Mn-O的研究   总被引:4,自引:0,他引:4  
综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了其合成方法、电化学性能以及掺杂、包覆改性等方面的研究结果。其中,LiNi1/3Co1/3Mn1/3O2材料已成功实现商业化,凭借优异的性价比,该材料将取代LiCoO2。  相似文献   

12.
蔡克迪  赵雪  仝钰进  肖尧  高勇  王诚 《化学进展》2015,27(12):1722-1731
锂氧电池是一种用金属锂作负极,以氧气作为正极反应物的金属空气电池,由于其具备较高的理论比能量且环境友好等优势,近年来开始备受关注。本文主要概述了锂氧电池关键技术的最新研究进展,包括正极材料、催化剂、电解质、负极及电池结构等,并在此基础上对其未来发展趋势进行了展望,以期对其他金属空气电池的研究提供新思路和手段。  相似文献   

13.
锂离子电池正极材料的晶体结构及电化学性能   总被引:6,自引:0,他引:6  
正极材料是锂离子电池的重要组成部分。作为提供自由脱嵌锂离子的正极材料,其晶体结构的特点决定了锂离子脱嵌路径方式的不同,并对锂离子电池的电化学性能等产生明显影响。本文根据正极材料的晶体结构和锂离子“脱嵌/嵌入”路径方式的不同,重点讨论了一维隧道结构、二维层状结构和三维框架结构正极材料的晶体结构特点、锂离子“脱嵌/嵌入”路径和其电化学性能之间的关系,主要包括一维隧道结构正极材料LiFePO4,二维层状结构正极材料LiMO2(M=Co, Ni, Mn)、Li1+xV3O8和Li2MSiO4 (M=Fe, Mn) 以及三维框架结构正极材料LiMn2O4和Li3V2(PO4)3。揭示了目前锂离子电池正极材料的研究现状和存在问题,并对今后的发展方向进行了评述。  相似文献   

14.
动力型锂离子电池富锂三元正极材料研究进展   总被引:3,自引:0,他引:3  
随着电动汽车、智能电网以及大规模储能领域的快速发展,对作为储能设备的锂离子电池的各项性能指标,如能量密度和功率密度等,提出了更加苛刻的要求。因此,开发稳定性好、比容量高的新型正极材料是进一步提高锂离子电池能量密度的关键。富锂三元正极材料xLi_2MnO_3·(1-x)Li Mn_(1/3)Ni_(1/3)Co_(1/3)O_2(0.1≤x≤0.5)具有工作电压高、比容量高、环境友好等优点,引起了广大科研工作者的高度关注和广泛研究。本文就此类新型富锂三元正极材料的研究进展进行了总结,对该类材料的晶体结构特征以及首次充放电机理、电化学性能的改善等进行了评述,并对其未来的发展方向进行了展望。  相似文献   

15.
近几十年,二次锂电池作为重要的储能装置得到迅猛发展,而开发高性能的锂电池电极材料一直是电化学能源领域的研究热点之一。与传统无机正极材料相比,聚合物正极材料具有比容量高、柔软性好、廉价易得、环境友好、加工方便、可设计性强等诸多优点。本文综述了导电聚合物、共轭羰基聚合物以及含硫聚合物正极材料的结构特点、电极反应机理、电化学性能和近五年来的重大研究进展,总结了这三类聚合物电极材料的优缺点,并重点介绍了含硫聚合物电极材料中存在的问题及改进手段,最后提出了综合这三类聚合物优点的含硫共轭导电聚合物将会是该领域的研究方向。  相似文献   

16.
近年来,随着对高性能电池需求的加大,锂空气电池因其超高的理论能量密度成为了研究热点。虽然锂空气电池的发展已取得了一些突破性的进展,但离实际应用差距甚远,仍有很多问题和挑战需要解决。其中,氧电极反应动力学速度缓慢就是一个非常严重的问题。为了促进锂空气电池的发展和应用,国际学术界对改善氧电极动力学速度的催化剂开展了大量的研究工作。本文总结了近年来国内外关于锂空气电池氧电极催化材料的主要研究进展,并对其未来发展作了前景展望。  相似文献   

17.
Rechargeable lithium-oxygen batteries (LOBs) are considered to be the next-generation energy technology owing to their high theoretical energy density. However, the sluggish cathode kinetics and degradation of Li anodes result in large voltage hysteresis and low coulombic efficiency. Various materials have been applied to promote the electrochemical performance of LOBs. Metal-organic frameworks (MOFs) possessing porous structures, open active sites and adjustable pore sizes have been attempted as promising materials for catalysts and separators of LOBs. This concept presents an overview of different MOF-based catalysts for LOBs, including traditional, conductive, semi-conductive and soluble MOFs, as well as our recently proposed photo-involved LOBs. Recent advances in MOF-based separators to restrain the shuttling of redox mediators between cathodes and anodes and suppress the formation of lithium dendrites are also discussed. Finally, perspectives on the development of MOF-based LOBs for future research are presented.  相似文献   

18.
The spinel LiMn2O4-δ Fδ cathode materials were synthesized by solid-state reaction, with calculated amounts of LiOH·H2O, MnO2(EMD), LiF. The results of electrochemical test demonstrated that these new materials exhibited excellent electrochemical properties. Its initial capacity reached ~115 mAh·g-1 and reversible efficiency is about 100%. After 60 cycles, its capacity was still around 110 mAh·g-1, with nearly 100% reversible efficiency.  相似文献   

19.
王官格  张华宁  吴彤  刘博睿  黄擎  苏岳锋 《化学进展》2020,32(12):2064-2074
随着电子设备的普及和电动汽车行业的迅速崛起,作为提供能量来源的锂离子电池发挥着重要的作用。以钴酸锂、磷酸铁锂以及三元正极材料为代表的锂离子电池产销量不断增加;与此同时,为了提供更长的续航时间以及续航稳定性,新型锂离子电池材料的研究工作也在不断推进。在此背景下,锂离子电池正极材料的失效、废弃以及资源化回收再生的过程就显得愈发重要,如何在下游解决报废锂离子电池处理的问题也逐渐提上日程。基于此,本文分别从湿法和火法再生两个角度对废旧锂离子电池正极材料的回收和再生过程进行了介绍,包括回收条件优化的方法、较为新颖的回收再生方法以及再生材料的性能等,并总结了回收再生过程的杂质元素,包括铝、铜等元素对再生材料结构和性能的影响以及工业上常用的回收废旧锂离子电池的方法和环境影响。最后对锂离子电池回收的方法进行总结并进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号