共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
随着通信与网络的快速发展,能够包含大容量信息的影片得到了广泛应用。利用分数阶傅里叶变换的特点,提出了一种全光学加密解密影片的方法。将现有的影片加密密钥从二重变为了四重,显著增加了影片的安全性。通过改变振幅型正弦光栅的作用位置,将影片的加密解密次数由现有的每帧各一次减小为总共一次,优化了算法。仿真结果验证了该方法的有效性。 相似文献
3.
4.
5.
基于随机分数傅里叶变换的双图像加密算法 总被引:3,自引:2,他引:1
利用光学随机分数傅里叶变换设计了一种双图像加密算法,并给出了相应的光学实现.加密算法中,将两幅原始图像分别作为加密系统输入复函数的振幅和位相分布函数,利用随机分数傅里叶变换进行加密,所得复函数的振幅即为加密图像,而位相部分是变换的输出相位,随机位相作为加密算法的密码.在数值模拟中,二值文本图像和灰度图像分别被作为原始图像用于加密结果分析和加密安全测试,结果表明该加密算法具有很好的安全性. 相似文献
6.
7.
为满足在数字信号处理器DSP(digital signal processor)上进行离散分数阶傅里叶变换DFRFT(discrete fractional fourier transform) 实时计算的要求,通过对多种DFRFT计算方法进行比较,选择Ozaktas提出的DFRFT快速算法进行基于DSP的详细实现处理。在对该快速算法进行理论分析的基础上,将快速算法的计算过程进行优化配置,并给出完整的计算量统计结果。在保证精度要求的情况下,提出的详细实现方法将快速算法的实数乘法计算量减至最小。工程实际应用表明:该方法满足DSP运算精度和实时性要求。 相似文献
8.
9.
提出了一种基于分数阶傅里叶变换的模式测控一体化方法。利用分数阶傅里叶变换光路对光纤模式耦合态进行空间调制和相位调制,以实现模式的有效分解。与双重傅里叶变换(F2)法以及空间和频谱成像(S2)法相比,采用的分数阶傅里叶变换法,通过改变分数阶参数,控制模式的空间分布以及模式间的叠加状态,更易于分解出高阶模式。基于分数阶傅里叶变换的模式测量方法可在更广泛空间,研究模式的空间和相位叠加以及模式分解,也可退化为F2法和S2法。 相似文献
10.
为了实现对两幅图像进行同步加密,降低传输负载并提高密文的抗明文攻击能力,提出了离散分数阶随机变换与加权像素混沌置乱的双图像加密算法。将2个分阶参数引入到Tent映射中,设计了新的Tent映射;根据明文像素值,构建加权像素直方图模型,联合位外部密钥,生成改进的Tent映射的初值;再利用初值对分数阶Tent映射进行迭代,输出2组随机序列,对2幅明文进行位置交叉混淆,获取2个置乱密文;基于DWT(discrete wavelet transform)技术,对2个置乱密文进行稀疏表示;根据混沌序列,定义随机循环矩阵,联合稀疏表示,获取2个置乱密文对应的测量矩阵。根据随机掩码与调制相位掩码,建立数据融合模型,将2个测量矩阵组合为复合矩阵;基于离散分数阶随机变换,对复合图像进行扩散,获取密文。测试数据显示:与已有的多图像加密方案相比,该算法的抗明文攻击能力与用户响应值更理想,密文的NPCR、UACI值分别达到了99.83%、34.57%。该算法具有较高的加密安全性,能够有效抵御网络中的外来攻击,确保图像安全传输。 相似文献
11.
12.
Novel single-channel color image encryption algorithm based on chaos and fractional Fourier transform 总被引:4,自引:0,他引:4
A new color image encryption algorithm based on fractional Fourier transform (FrFT) and chaos is proposed. The colors of the original color image are converted to HSI (hue-saturation-intensity), and the S component is transformed by the random-phase encoding based on FrFT to obtain a new random phase. The I component is transformed by double random-phase encoding based on FrFT using the H component and the new random phase as two phase plates. Then chaos scrambling technology is used to encrypt the image, which makes the resulting image nonlinear and disorder both in spatial domain and frequency domain. Additionally, the ciphertext is not a color image but a combination of a gray image and a phase matrix, so the ciphertext has camouflage property to some extent. The results of numerical simulations demonstrate the effectiveness and the security of this algorithm. 相似文献
13.
Image encryption based on extended fractional Fourier transform and digital holography technique 总被引:1,自引:0,他引:1
We present a new optical image encryption algorithm that is based on extended fractional Fourier transform (FRT) and digital holography technique. We can perform the encryption and decryption with more parameters compared with earlier similar methods in FRT domain. In the extended FRT encryption system, the input data to be encrypted is extended fractional Fourier transformed two times and random phase mask is placed at the output plane of the first extended FRT. By use of an interference with a wave from another random phase mask, the encrypted data is stored as a digital hologram. The data retrieval is operated by all-digital means. Computer simulations are presented to verify its validity and efficiency. 相似文献
14.
A new method for double image encryption is proposed that is based on amplitude-phase hybrid encoding and iterative random phase encoding in fractional Fourier transform (FrFT) domains. In the iterative random phase encoding operation, a binary random matrix is defined to encode two original images to a single complex-valued image, which is then converted into a stationary white noise image by the iterative phase encoding with FrFTs. Compared with the previous schemes that uses fully phase encoding, the proposed method reduces the difference between two original images in key space and sensitivity to the FrFT orders. The primitive images can be retrieved exactly by applying correct keys with initial conditions of chaotic system, the pixel scrambling operation and the FrFT orders. Computer simulations demonstrate that the encryption method has impressively high security level and certain robustness against data loss and noise interference. 相似文献
15.
A new method for optical image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform. We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as additional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. The optical realization is then proposed and computer simulations are also performed to confirm the possibility of the proposed method. 相似文献
16.
Image encryption based on the multiple-parameter discrete fractional Fourier transform and chaos function 总被引:1,自引:0,他引:1
In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. In this paper, we propose a new approach for image encryption based on the multiple-parameter discrete fractional Fourier transform and chaotic logistic maps in order to meet the requirements of the secure image transmission. In the proposed image encryption scheme, the image is encrypted by juxtaposition of sections of the image in the multiple-parameter discrete fractional Fourier domains and the alignment of sections is determined by chaotic logistic maps. This method does not require the use of phase keys. The new method has been compared with several existing methods and shows comparable or superior robustness to blind decryption. 相似文献
17.
A multiple-image cryptosystem is proposed based on the cascaded fractional Fourier transform. During an encryption procedure, each of the original images is directly separated into two phase masks. A portion of the masks is subsequently modulated into an interim mask, which is encrypted into the ciphertext image; the others are used as the encryption keys. Using phase truncation in the fractional Fourier domain, one can use an asymmetric cryptosystem to produce a real-valued noise-like ciphertext, while a legal user can reconstruct all of the original images using a different group of phase masks. The encryption key is an indivisible part of the corresponding original image and is still useful during decryption. The proposed system has high resistance to various potential attacks, including the chosen-plaintext attack. Numerical simulations also demonstrate the security and feasibility of the proposed scheme. 相似文献
18.
We propose the encryption of color images using fractional Fourier transform (FRT). The image to be encrypted is first segregated into three color channels: red, green, and blue. Each of these channels is encrypted independently using double random phase encoding in the FRT domain. The different fractional orders and random phase masks used during the process of encryption and decryption are the keys to enhance the security of the proposed system. The algorithms to implement the proposed encryption and decryption scheme are discussed, and results of digital simulation are presented. The technique is shown to be a powerful one for colored text encryption. We also outline the implementation of the algorithm and examine its sensitiveness to changes in the fractional order during decryption. 相似文献
19.
We propose a new method for image encryption using fractional Fourier transform and chaos theory. Random phase masks are generated using iterative chaos functions. The input image is combined with the first random phase mask at the object plane and is then transformed using the fractional Fourier transform. After the first fractional Fourier transform, the second random phase mask, again generated by using the chaos functions, is used at the fractional plane. The second fractional Fourier transform operation is then carried out to obtain the encrypted image. Three types of chaos functions have been used: the logistic map, the tent map and the Kaplan–Yorke map. The mean square error and the signal-to-noise ratio between the decrypted image and the input image for the correct order and the incorrect order of the fractional Fourier transform have been calculated. The computer simulations are presented to verify the validity of the proposed technique. 相似文献