首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel synthetic strategy for the synthesis of graft copolymers is reported. Block copolymers containing segments with stable nitroxyl radicals side groups were first prepared by anionic polymerization, which were then used as a precursor for the subsequent nitroxide-mediated radical polymerization (NMRP) of styrene. This way, block–graft copolymers with polystyrene side chains grafted from one of the blocks were successfully synthesized in a controlled manner. In addition, block–graft copolymers with grafted polystyrene chains and a poly(tert-butyl methacrylate) block were subjected to hydrolysis to yield the corresponding amphiphilic polymers. The structures and the molecular weight characteristics of the polymers were characterized by spectral and chromatographic analyses. The surface morphology of thus obtained polymers was also investigated by microscopic techniques. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 62–69  相似文献   

2.
In this work, we examined the synthesis of novel block (co)polymers by mechanistic transformation through anionic, cationic, and radical living polymerizations using terminal carbon–halogen bond as the dormant species. First, the direct halogenation of growing species in the living anionic polymerization of styrene was examined with CCl4 to form a carbon–halogen terminal, which can be employed as the dormant species for either living cationic or radical polymerization. The mechanistic transformation was then performed from living anionic polymerization into living cationic or radical polymerization using the obtained polymers as the macroinitiator with the SnCl4/n‐Bu4NCl or RuCp*Cl(PPh3)/Et3N initiating system, respectively. Finally, the combination of all the polymerizations allowed the synthesis block copolymers including unprecedented gradient block copolymers composed of styrene and p‐methylstyrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 465–473  相似文献   

3.
A series of graft (co)polymers were synthesized by nucleophilic substitution reaction between iodinated 1,2‐polybutadiene (PB‐I, backbone) and living polymer lithium (side chains). The coupling reaction between PB‐I and living polymers can finish within minutes at room temperature, and high conversion (up to 92%) could be obtained by effectively avoiding side reaction of dimerization when living polymers were capped with 1,1‐diphenylethylene. By virtue of living anionic polymerization, backbone length, side chain length, and side chain composition, as well as graft density, were well controlled. Tunable molecular weight of graft (co)polymers with narrow molecular weight distribution can be obtained by changing either the lengths of side chain and backbone, or the graft density. Graft copolymers could also be synthesized with side chains of multicomponent polymers, such as block polymer (polystyrene‐b‐polybutadiene) and even mixed polymers (polystyrene and polybutadiene) as hetero chains. Thus, based on living anionic polymerization, this work provides a facile way for modular synthesis of graft (co)polymers via nucleophilic substitution reaction between living polymers and polyhalohydrocarbon (PB‐I). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Surface‐initiated living free‐radical polymerization is employed in a multistep procedure to prepare hollow polymeric nanocapsules. Initially, trichlorosilyl‐substituted alkoxyamine initiating groups are attached to the surface silanol groups of silica nanoparticles. This surface layer of initiating groups is then used to grow functionalized linear chains leading to a core–shell morphology. The choice of functional groups is governed by their ability to undergo facile crosslinking reactions, with both active ester and benzocyclobutene groups being examined. Under either chemical or thermal conditions, the reaction of these functionalities gives a crosslinked polymeric shell that is covalently attached to, and surrounds, the central silica core. Removal of the silica core with HF then gives the hollow polymeric nanocapsules, which are stable under solvent dissolution and thermal treatment because of their crosslinked structure. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1309–1320, 2002  相似文献   

5.
由可控聚合,包括活性阴离子和自由基聚合直接制备不同形貌纳米材料,是近几年来合成化学领域的一个重要研究成果.与两亲性嵌段共聚物在选择性溶剂中自组装方法不同,在选择性溶剂中进行的分散聚合,首先生成两亲性嵌段共聚物,并逐渐增加第二段聚合物的链长,以实现相分离,形成球形胶束;聚合物链继续增长,实现形貌转变,从而制备预期的聚合物形貌,包括球形胶束、纳米棒、纳米线、囊泡和复合囊泡等.本文综述了乳液聚合法制备球形胶束等形貌;描述了不同聚合体系形成的形貌以及它们的性质和应用,讨论了形貌的形成机理和控制方法,同时指出了存在的问题.  相似文献   

6.
Radical polymerization behavior of a vinyl substituted cyclic carbonate, 4‐phenyl‐5‐vinyl‐1,3‐dioxoran‐2‐one ( 1 ), is described. Radical polymerization of 1 proceeded through selective vinyl polymerization to produce polymers bearing carbonate groups in the side chain, in contrast to that of an oxirane analogue of 1 , 1‐phenyl‐2‐vinyl oxirane that proceeds via the selective ring‐opening fashion. Although the homopolymerization of 1 produce polymers in relatively lower yield, copolymerizations effectively provided cyclic carbonate‐containing copolymers. Nucleophilic addition of primary amines to the resulting homopolymers and copolymers produced the corresponding multifunctional polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 584–592, 2005  相似文献   

7.
Stimuli-responsive star polymers gain more and more interest over the last decades due to their unique properties compared to their linear counterparts. The branched structure for instance has influence on the responsive behavior of these polymers. This review offers an overview of stimuli-responsive star polymers generated by different polymerization techniques, e.g. anionic and controlled radical polymerization (CRP). Beside conventional branched homopolymers different other types like block copolymers, miktoarm star copolymers, core crosslinked star polymers (CCS) and comb polymers are also presented. Furthermore their responsive behavior in solution or immobilized on a substrate, and their applications are outlined. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2980–2994  相似文献   

8.
(甲基)丙烯酸氟烷基酯的“活性”/可控聚合   总被引:3,自引:0,他引:3  
带氟烷基侧链的(甲基)丙烯酸氟烷基酯聚合物是一类具有独特表面性能和光学特性的氟聚合物,传统的自由基共聚合由于无法调节聚合物的微细结构和氟原子的分布,限制了该类聚合物在更广领域的应用.活性聚合为聚合物分子设计和合成提供了一个有效方法,利用活性聚合方法可以获得预期结构和性能的含氟嵌段聚合物材料.由于引入了氟烷基侧链,(甲基)丙烯酸氟烷基酯的活性聚合又有其特殊性,本文针对它的活性阴离子聚合、基因转移聚合、活性自由基聚合等方面作一综述.  相似文献   

9.
Synthesis of poly(ethylene oxide) (PEO) macromonomers carrying a methacyloyl group in one end, and N, N-dimethyl amino, thiophene, styryl and vinyl ether functional groups in the other end was desribed. The general synthetic strategy is based on the living anionic polymerization of ethylene oxide initiated with functional potassium alcoholates, followed by reaction with methacyloyl chloride. These macromonomers were further utilized in various macromolecular architectures through via concurrent or selective thermal free radical, oxidative and photoinitiated free radical and cationic polymerization methods. The use of this synthetic route to prepare graft copolymers possessing completly and perfectly alternating PEO side chains using charge-transfer-complex polymerization was also demonstrated.  相似文献   

10.
通过活性聚苯乙烯(PS)和聚异戊二烯(PI)负离子与含1,1-二苯基乙烯(DPE)侧基的聚苯乙烯(PSe)的偶联反应合成了结构明确的每个重复单元含一条侧链的梳形支化聚合物,其中,PSe是通过Sc单体的原子转移自由基聚合(ATRP)和Wittig反应制得的.用IR1、H-NMR、GPC和SLS等测试方法对所得梳形支化聚合物进行了详细表征,讨论了活性负离子链与PSe的DPE基团的配比对接枝率的影响.结果表明,活性负离子链与DPE基团的偶联反应是高效的,可以通过调节活性负离子链与DPE基团的加料比来控制接枝率.另外,还讨论了PSe和活性负离子链的分子量对接枝率的影响.结果表明,在实验范围内当活性负离子链过量时可获得几乎定量的接枝率.  相似文献   

11.
ABA‐type copolymers were synthesized by the anionic polymerization of hexanelactam with the sodium salt of hexanelactam as an initiator and amino‐terminated polytetrahydrofuran telechelic functionalized with diisocyanates. Two types of diisocyanates, hexamethylene diisocyanate (1,6‐diisocyanatohexane) and isophorone diisocyanate (IF; 5‐isocyanato‐1‐isocyanatomethyl‐1,3,3‐trimethylcyclohexane), were used as precursors for polymeric activators (PACs). IF was used for the first time. It was proven that the PACs were incorporated as soft, flexible midblocks in the chains of hard nylon‐6 segments. The polymers were isolated and characterized with various spectroscopic techniques. The effects of the central PAC block (according to the type, molecular weight, and content) and the polymerization conditions on the kinetics, activation energies, molecular weights, and structures of the triblock copolymers were investigated. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4154–4164, 2000  相似文献   

12.
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002  相似文献   

13.
Linear and star shaped polyglycidols (synonym with polyglycerols) are prepared in a controlled ring opening polymerization of protected glycidols. Beside the molar mass and the polydispersity, the architecture of the polyglycidols is controlled by using mono‐ and multifunctional mono‐ and polydispers initiators. Copolymers of dissimilarly protected glycidols as well as copolymers with nonfunctional oxiranes were prepared by means of anionic polymerization while copolymers of protected glycidol with tetrahydrofuran were prepared by means of cationic polymerization. Polyethers with functional groups in the side chains (functional polyethers) with special emphasis on polyglycidols (containing hydroxymethyl groups in the side chains) were used to prepare multifunctional polymers and (hetero)grafted polymer brushes via chemical and enzyme catalyzed reaction. The potential of poly(glycidol‐graft‐ε‐caprolactone)‐co‐glycidol) prepared via enzyme catalyzed grafting of polyglycidols using ε‐caprolactone as a monomer and Lipase B from Candida antarctica as a catalyst is presented. Finally, comparative degradation studies of densely and loosely grafted polyglycidols are presented and discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3209–3231, 2009  相似文献   

14.
Various polysiloxanes bearing chlorobenzyl side groups were synthesized by the hydrolytic polycondensation of the 73:27 mol/mol mixture of [2‐(4‐chloromethylphenyl)ethyl] methyldichlorosilane and [1‐(4‐chloromethylphenyl)ethyl] methyldichlorosilane followed by the cationic equilibration or coequilibration with octamethylcyclotetrasiloxane, D4. 1,3‐Divinyltetramethyl‐disiloxane was used as the chain end blocker to obtain a vinyl–Si ended chlorobenzyl‐substituted polysiloxane. In some cases, the polymer was additionally treated with dimethylvinylchlorosilane to achieve full substitution of chain ends by the vinyl group. Cohydrolysis of the chlorobenzylic monomer mixture with dimethyldichlorosilane was also practiced. Multiblock copolymers were obtained by polyhydrosilylation of the α,ω‐divinylsilyl chlorobenzyl‐substituted polysiloxanes with α,ω‐dihydrosilyl polydimethylsiloxanes. All these polymers and copolymers containing reactive chlorobenzylic groups were demonstrated to be convenient precursors of functional polysiloxanes of potential practical use. Some specific functional groups, such as quaternary ammonium salt groups of biocidal activity or azobenzene groups making the polymer sensitive to external stimuli by light, may be readily generated on polysiloxane under mild conditions. The chlorobenzylic substituted polysiloxanes may be also used as macroinitiators of the atom transfer radical polymerization, to obtain polysiloxanes with grafted organic polymers, such as styrene, 4‐chloromethylstyrene, and n‐butylacrylate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1682–1692, 2004  相似文献   

15.
The story of the discovery of living polymers is presented. Living polymers are polymers that retain their ability to propagate and grow to a desired size while their degree of termination or chain transfer is still negligible. Theoretical and mechanistic considerations are discussed. The living polymerization technique provides access to uniform polymers (Poisson molecular weight distribution) of controllable size, block copolymers, functional polymers, and star and comb-shaped polymers. The quantitative aspects of electron transfer are fully discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: ix–xv, 1998  相似文献   

16.
Electrospray ionization mass spectrometry was performed to identify the structure of polymeric methyl acrylates generated via the cumyl dithiobenzoate (CDB), cumyl p‐fluorodithiobenzoate (CPFDB), and 1‐phenylethyl dithiobenzoate (PEDB) mediated reversible addition–fragmentation chain‐transfer (RAFT) polymerizations. The relatively simple spectra clearly demonstrate the end groups of this living free‐radical polymerization technique. Only polymeric chains carrying one leaving group of the RAFT agent and the dithiobenzoate end group as the active RAFT center were discovered. Multiple‐stage mass spectrometric experiments and oxidation of the dithioester end group confirmed the structure of the generated polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4032–4037, 2002  相似文献   

17.
Organotellurium‐mediated living radical polymerizations (TERPs) and organostibine‐mediated living radical polymerizations (SBRPs) provide well‐defined polymers with a variety of polar functional groups via degenerative chain‐transfer polymerization. The high controllability of these polymerizations can be attributed to the rapid degenerative‐transfer process between the polymer‐end radicals and corresponding dormant species. The versatility of the methods allows the synthesis of AB diblock, ABA triblock, and ABC triblock copolymers by the successive addition of different monomers. This review summarizes the current status of TERP and SBRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1–12, 2006  相似文献   

18.
Topics concerning the cationic ring‐opening polymerization of cyclic imino ethers and functional material production based on the resulting polymers are reviewed. Cyclic imino ethers are readily subjected to isomerization polymerization via cationic initiators. Mechanistic studies have provided a new concept, electrophilic polymerization. Double isomerization polymerization and no‐catalyst alternating copolymerization are interesting examples that show characteristics of the ring opening of cyclic imino ethers. The living polymerization of these monomers affords precisely controlled polymeric materials. Through the use of the unique properties of the product polymers, various functional polymeric materials, such as polymeric nonionic surfactants, compatibilizers, hydrogels, stabilizers for dispersion polymerization, biocatalyst modifiers, and supramolecular assemblies, have been developed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 192–209, 2002  相似文献   

19.
Herein, we clarified the ring-expansion cationic polymerization with a cyclic hemiacetal ester (HAE)-based initiator was versatile in terms of applicable vinyl ether monomers. Although there was a risk that higher reactive vinyl ethers may incur β-H elimination of the HAE-based cyclic dormant species to irreversibly give linear chains, the polymerizations were controlled to give corresponding cyclic polymers from various alkyl vinyl ethers of different reactivities. Functional vinyl ether monomers were also available, and for instance a vinyl ether monomer carrying an initiator moiety for metal-catalyzed living radical polymerization in the pendant allowed construction of ring-linear graft copolymers through the grafting-from approach. Furthermore, ring-based gel was prepared via the addition of divinyl ether at the end of the ring-expansion polymerization, where multi HAE bonds cyclic polymers or fused rings were crosslinked with each other. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3082–3089  相似文献   

20.
The living/controlled copolymerization of methyl acrylate with 1‐alkenes and norbornene derivatives through several radical polymerization techniques has been achieved. These techniques include atom transfer radical polymerization, reversible addition–fragmentation transfer polymerization, nitroxide‐mediated polymerization, and degenerative transfer polymerization. These systems display many of the characteristics of a living polymerization process: the molecular weight increases linearly with the overall conversion, but the polydispersity remains low. Novel block copolymers have been synthesized through the sequential addition of monomers or chain extension. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6175–6192, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号