首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of liquid–liquid phase separation in off-critical polymer blends was studied with time-resolved small-angle neutron scattering. Our objective was to study the nature of the nuclei that formed during the initial stages of the phase transition. The blends were composed of model polyolefins—deuterium-labeled poly(methyl butylene) (PMB) and poly(ethyl butylene) (PEB)—with molecular weights of about 200 kg/mol. A direct examination of the initial clustering of molecules before macroscopic phase separation was possible because of the large size of the polymer chains and concomitant entanglement effects. We discovered that the scattering profiles obtained during nucleation merged at a well-defined critical scattering vector. We propose that this is the signature of the critical nucleus and that the size of the critical nucleus is inversely proportional to the magnitude of the critical scattering vector. The kinetic studies were preceded by a thorough characterization of the equilibrium thermodynamic properties of our PMB/PEB blends. The locations of the binodal and spinodal curves of our system are consistent with predictions based on the Flory–Huggins theory. This combination of thermodynamic and kinetic experiments enabled the quantification of the dependence of the size and structure of the critical nuclei on the quench depth. Our results do not agree with any of the previous theories on nucleation. Some aspects of our results are addressed in recent theoretical work by Wang in which the effects of fluctuations on the classical binodal and spinodal curves in polymer blends are incorporated. Both theory and experiment support the notion that the traditional stability limit (spinodal) should be replaced by a metastability limit. Although Wang's theory provides an explanation for some of our observations, many fundamental issues regarding nucleation in polymer blends remain unresolved. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1793–1809, 2004  相似文献   

2.
Liquid–liquid thermally induced phase separation of the polymer‐diluent system of poly(ethylene‐co‐vinyl alcohol) (EVOH)‐glycerol was examined under light scattering. For EVOH with an ethylene content of 38 mol % (EVOH38), maxima of the scattered light intensity were observed that indicated that phase separation occurred by the spinodal decomposition (SD). The growth of the structures formed by the general liquid–liquid phase separation obeyed a power‐law scaling relationship in SD. For EVOH with an ethylene content of 32 mol % (EVOH32), the liquid–liquid phase separation resulted from the polymer crystallization. In this case, the structure growth showed the characteristic behavior in which the crystalline particles were initially formed, and then the droplets formed by the liquid–liquid phase separation induced by the crystallization grew rapidly. Furthermore, the growth of the droplet by the phase separation was followed by an optical microscope measurement at a constant cooling rate. The phase‐separated structure formed after the crystallization can grow faster than that formed by the normal liquid–liquid phase separation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 194–201, 2003  相似文献   

3.
The new fluctuation‐assisted mechanism for nucleation and crystallization in the isotactic polypropylene/poly(ethylene‐co‐octene) alloy has been studied. We found that the liquid–liquid phase separation (LLPS) had a dominant influence on the crystallization kinetics through the nucleation process. After LLPS, the nucleation of crystallization mainly occurred at the interface of the phase‐separated domains. It is because that the concentration fluctuations of the LLPS induced the motion of polymer chains and possibly some segmental alignment and/or orientation in the concentration gradient regions through interdiffusion, which could assist the formation of nuclei for crystallization. In other words, the usual nucleation energy barrier could be overcome (or at least partially) by the concentration fluctuation growth of LLPS in the unstable regions. This could be viewed as a new kind of heterogeneous nucleation and could be an addition to the regular nucleation and growth mechanism for crystallization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 166–172, 2009  相似文献   

4.
The reaction-induced phase separation in a tetrafunctional epoxy–cyclic anhydride system modified with polysulfone (PSF) was followed by optical microscopy (OM), light scattering (LS), and scanning electron microscopy (SEM). The selected system was N,N,N′,N′-tetraglycidyl-4,4′-diamino diphenylmethane cured with methyl tetrahydrophthalic anhydride, in the presence of variable PSF concentrations. The different experimental techniques allow us to establish the phase separation mechanism. For modifier concentrations close to the critical point, 10 and 15 wt % PSF, phase separation proceeded by spinodal demixing (SD). For a modifier concentration much lower than the critical point, 5 wt % PSF, phase separation occurred via the nucleation and growth (NG) mode. For 7.5 wt % PSF, depending on the cure temperature, SD or NG was observed. Dynamic mechanical behavior of the resulting materials had been discussed based on fractionation of different species during the phase separation process. The fracture toughness increased significantly when bicontinuous (10 wt % PSF) or phase-inverted (15 wt % PSF) structures were generated. For mixtures containing 15 wt % PSF, the dependence of fracture toughness on the stoichiometric ratio (anhydride groups/epoxy groups) was analyzed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2711–2725, 1999  相似文献   

5.
In this work, ultrafast differential scanning calorimetry (UFDSC) is used to study the dynamics of phase separation. Taking poly(vinyl methyl ether)/polystyrene (PVME/PS) blend as the example, we firstly obtained the phase diagram that has lower critical solution temperature (LCST), together with the glass transition temperature (Tg) of the homogeneous blend with different composition. Then, the dynamics of the phase separation of the PVME/PS blend with a mass ratio of 7:3 was studied in the time range from milliseconds to hours, by the virtue of small time and spatial resolution that UFDSC offers. The time dependence of the glass transition temperature (Tg) of PVME‐rich phase, shows a distinct change when the annealing temperature (Ta) changes from below to above 385 K. This corresponds to the transition from the nucleation and growth (NG) mechanism to the spinodal decomposition (SD) mechanism, as was verified by morphological and rheometric investigations. For the SD mechanism, the temperature‐dependent composition evolution in PVME‐rich domain was found to follow the Williams–Landel–Ferry (WLF) laws. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1357–1364  相似文献   

6.
A blend of high‐density polyethylene and an elastomeric poly(ethylene‐co‐1‐octene) resin, containing 25 mol % octene and long‐chain branching, was phase‐separated in the melt under quiescent conditions. After melt flow, the blend had fine globular or interconnected phase morphologies that were interpreted as originating from the various stages of coarsening after liquid–liquid phase separation through spinodal decomposition. It was inferred that the miscibility of the blend was enhanced under melt flow. After cessation of flow, concurrent liquid–liquid and solid–liquid phase separation took place, resulting in the formation of an interpenetrating morphology comprising amorphous polyethylene, copolymer, and crystalline polyethylene. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 380–389, 2001  相似文献   

7.
We have studied the nonisothermal and isothermal crystallization kinetics of an aromatic thermotropic liquid crystalline polyimide synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA) and 1,3-bis[4-(4′-aminophenoxy) cumyl] benzene (BACB) by means of differential scanning calorimetry (DSC). Polarized light microscopy (PLM) and wide-angle X-ray diffraction (WAXD) results confirm that this polyimide exhibits a smectic texture. Nonisothermal crystallization showed two strong and one weak exothermic peaks during cooling. The phase transition from isotropic melt to liquid crystalline state is extremely fast which completes in several seconds. The mesophase transition has a small Avrami parameter, n, of approximate 1. The isothermal crystallization of 253–258°C has been examined. The average value n is about 2.6 and the temperature-dependent rate constant k changes about two orders of magnitude in the crystallization temperature range of 6°C. The slope of ln k versus 1/(TcΔT) is calculated to be −2.4 × 105, which suggests nucleation control, via primary and/or secondary nucleation for the crystallization process. During the annealing process, a new phase (slow transition) is induced, which grows gradually with annealing time. At lower annealing temperatures (220–230°C), the slow transition process seems not to be influenced by the crystals formed during cooling process and its Avrami parameter n is ca. 0.3–0.4. However, the slow transition was hindered by the crystals formed during cooling process when annealed at higher temperature (230–240°C). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1679–1694, 1998  相似文献   

8.
In this study, we investigate polylactic acid (PLA) crystallization under in situ biaxial extension in a nonsolvent‐induced phase separation foaming process. Our ternary system consists of PLA, dichloromethane (DCM) as solvent and hexane as nonsolvent. For the first time, the formation of a shish‐kebab crystalline morphology is observed in such a solution‐based foaming process in certain solid–liquid phase separated systems. The formation of shish‐kebabs is described based on the coil‐stretch transition concept. The rapid biaxial deformation caused by macropore growth uniaxially stretches the long chains that are tied with at least two single crystals which eventually leads to the formation of shish structures throughout the polymer‐rich phase. The kebab lamellae then form perpendicularly on the shish cores. The scanning electron microscopy (SEM) observations and our interpretation of the crystallization phenomena are confirmed by differential scanning calorimetry (DSC) analysis. The observation of various crystalline morphologies, particularly shish‐kebabs, and the elucidation of their formation mechanisms contribute to the understanding of phase separation and pore growth as well as crystallization in such polymer–solvent–nonsolvent systems. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1055–1062  相似文献   

9.
A new multi‐variable‐measurement approach for characterizing and correlating the nanoscale and microscale morphology of crystal‐amorphous polymer blends with melt‐phase behavior is described. A vertical small‐angle light scattering (SALS) instrument optimized for examining the scattering and light transmitted from structures ranging from 0.5 to 50 μm, thereby spanning the size range characteristic of the initial‐to‐late stages of thermal‐phase transitions (e.g., melt‐phase separation and crystallization) in crystal‐amorphous polymer blends, was constructed. The SALS instrument was interfaced with differential scanning calorimetry (DSC), and simultaneous SALS/DSC/transmission measurements were performed. We show that the measurement of transmitted light and SALS under HV (cross‐polarized) optical alignments during melting can be used to reliably measure the thermodynamic (e.g., crystal melting and melt‐phase separation temperatures) and structural variables (e.g., crystalline fraction within the superstructures and volume fraction of superstructures) necessary for describing the multiphase behavior of crystal‐amorphous blends in one combined measurement. We also evaluate the orientation correlations of crystalline volume elements within the superstructures. Our results indicate that simultaneous measurement of transmitted light can provide a reliable estimate of the total scattering from density and orientation fluctuations and the melt‐phase separation temperature of polymer blends. For solution‐cast poly(?‐caprolactone)/poly(D,L‐lactic acid) blends, our multivariable measurements during melting provide the parameters necessary to generate a crystal–liquid and liquid–liquid phase diagram and characterize the solid‐state morphology. This opens up the challenge to explore use of our vertical SALS instrument as a rapid and convenient method for developing structure–property relationships for crystal‐amorphous polymer blends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2714–2727, 2002  相似文献   

10.
The nucleation mechanism of crystals of small organic molecules, postulated based on computer simulations, still lacks experimental evidence. In this study we designed an experimental approach to monitor the early stages of the crystallization of ibuprofen as a model system for small organic molecules. Ibuprofen undergoes liquid–liquid phase separation prior to nucleation. The binodal and spinodal limits of the corresponding liquid–liquid miscibility gap were analyzed and confirmed. An increase in viscosity sustains the kinetic stability of the dense liquid intermediate. Since the distances between ibuprofen molecules within the dense liquid phase are similar to those in the crystal forms, this dense liquid phase is identified as a precursor phase in the nucleation of ibuprofen, in which densification is followed by generation of structural order. This discovery may make it possible to enrich poorly soluble pharmaceuticals beyond classical solubility limitations in aqueous environments.  相似文献   

11.
We have used molecular dynamics simulations with a coarse‐grained model to study the effect of a particle on the crystallization of polymer melt. We analyzed in particular a bond order parameter to characterize the nucleation and crystallization process. Our calculations show that the presence of a particle modifies the free energy landscape of polymer melts, locally induces the ordering of polymer melts near the particle surface, and thus enhances the polymer crystallization. Because the interaction between the particle and polymers is repulsive, our results suggest that the origin of the enhancement for polymer crystallization is entropic. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2161–2166, 2007  相似文献   

12.
The morphological development and crystallization behavior of a poly(ethylene terephthalate)/poly(hydroxyl ether of bisphenol A) (phenoxy) blend were studied with time‐resolved light scattering, optical microscopy, differential scanning calorimetry, and small‐angle X‐ray scattering (SAXS). During annealing at 280 °C, liquid–liquid phase separation via spinodal decomposition proceeded in the melt‐extruded specimen. After the formation of a domain structure, the blend slowly underwent phase homogenization by the interchange reactions between the two polymers. Specimens annealed for various times (ts) at 280 °C were subjected to a temperature drop and the effects of liquid‐phase changes on crystallization were then investigated. The shifts in the position of the cold‐crystallization peaks indicated that the crystallization rate is associated with the composition change of the separated phases as well as the change of the sequence distribution in polymer chains during annealing. The morphological parameters at the lamellar level were determined by a correlation function analysis on the SAXS data. The crystal thickness (lc) increased with ts, whereas the amorphous layer thickness (la) showed little dependence on ts. Observation of a constant la value revealed that a large number of noncrystallizable species formed by the interchange reactions between the two polymers were excluded from the lamellar stacks and resided in the interfibrillar regions, interspherulitic regions, or both. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 223–232, 2008  相似文献   

13.
A main chain hydrogen-bonded liquid crystalline polymer was formed by melt mixing two complementary components, A and B, which in their individual states do not exhibit liquid crystallinity. The structure of the polymer and the thermal stability of its mesophase were studied using synchrotron radiation SAXS/WAXS/DSC at Daresbury (UK) and by variable temperature Fourier transform infrared. The chain extension, or “polymerization” process, was accelerated at the point when the polymer formed a liquid crystalline phase upon cooling from the isotropic melt. The polymer has an aabb chain structure and forms a smectic layer with a length of the A-B repeating unit. The hydrogen-bonded main chain polymer studied here is a monotropic liquid crystal. Above 150°C, it exhibits kinetic stabilization of its monotropic smectic phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1617–1624, 1998  相似文献   

14.
In this study, memory effect of mesomorphic isotactic polypropylene (iPP) was investigated using polarized optical microscope and small‐angle X‐ray scattering. Differing from classical memory effect, mesomorphic iPP melt had a higher growth rate and a higher memory temperature. The relative growth rate increased with increasing crystallization temperature. Lauritzen–Hoffman plots indicated that the increased growth rate arose from reduced surface nucleation barrier. The highest memory temperature was estimated to be 185 °C, which was close to the equilibrium melting point of iPP crystal. Additionally, Small‐angle X‐ray scattering measurements showed that a liquid crystal layer might exist between lamellar and amorphous layers. Based on above results, a crystallization model was proposed. In the mesomorphic iPP melt, there exist aggregates structurally similar to β phase except α‐phase crystal residuals, which cannot act as nucleation sites or transform to β crystal through surface nucleation. The only way for the aggregate is to transform to α crystal during crystal growth. The aggregate decreases the surface nucleation barrier and promotes the helical growth, leading to higher growth rate. Only when the aggregate relaxes to polymer coils through thickening at a higher temperature, can the memory effect be erased. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1573–1580  相似文献   

15.
Various topological phase diagrams of blends of main-chain liquid crystalline polymer (MCLCP) and flexible polymer have been established theoretically in the framework of Matsuyama–Kato theory by combining Flory–Huggins (FH) free energy for isotropic mixing, Maier–Saupe (MS) free energy for nematic ordering in the constituent MCLCP, and free energy pertaining to polymer chain-rigidity. As a scouting study, various phase diagrams of binary flexible polymer blends have been solved self-consistently that reveal a combined lower critical solution temperature (LCST) and upper critical solution temperature (UCST), including an hourglass phase diagram. The calculated phase diagrams exhibit liquidus and solidus lines along with a nematic–isotropic (NI) transition of the constituent MCLCP. Depending on the strengths of the FH interaction parameters and the anisotropic (nematic–nematic) interaction parameters, the self-consistent solution reveals an hourglass type phase diagram overlapping with the NI transition of the constituent MCLCP. Subsequently, thermodynamic parameters estimated from the phase diagrams hitherto established have been employed in the numerical computation to elucidate phase separation dynamics and morphology evolution accompanying thermal-quench induced phase separation of the MCLCP/polymer mixture. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3621-3630, 2006  相似文献   

16.
A simulation of crystallization and a structural study of an overcooled NaCl melt are reported. A criterion is suggested for classifying the structural states of ions in the transition mode of nucleation. It is shown that in the bulk of overcooled liquid, short-lived crystal phase germs appear and vanish. A distribution of the critical clusters according to form and size was found. It was assumed that crystal growth occurred by collective synchronization of particle motions in crystal and liquid near the interface. The NaCl nanocrystals formed during nucleation are cubic crystals with clear-cut faces and edges. Overcooling the liquid to a greater extent led to the formation of defective polycrystalline structures.  相似文献   

17.
The interplay between liquid-liquid phase separation (LLPS) and crystallization at several compositions in statistical copolymer blends of poly(ethyleneco-hexene) and poly(ethylene-cobutene) has been examined by optical microscopy (OM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The phase contrast optical microscopy shows interconnected bicontinuous structures for deeply quenched LLPS, characteristic of spinodal decomposition. After a second quench to a temperature below the melting point, an overwhelming change in crystallization kinetics has been clearly observed, which is caused by the increase of the nucleation rate assisted by concentration fluctuations due to the spontaneous spinodal LLPS. We propose a new mechanism of "fluctuation assisted nucleation" in the crystallization process for such interactive process in a blend system. The experimental results from OM, AFM, and DSC measurements at various conditions are all consistent with the fluctuation assisted nucleation model.  相似文献   

18.
In this article the demixing instability and phase segregation in unentangled polymer solutions of semiflexible chains at high‐rate uniaxial extension above the coil to stretched coil transition was studied. Orientation of the stretched chains was described in terms of an effective potential field. Based on the free energy analysis it was shown that the flow‐induced orientation of polymer segments could drastically reduce the energy of their steric repulsion. As a result attraction between the chains gain more importance, and this effect lead to the demixing process and eventual segregation of polymer from the solvent if the strain rate exceeds some critical value. A mean‐field theory was developed to study this flow‐induced phase separation effect. The phase diagrams of the system showing the spinodal and binodal transitions at different extension rates were calculated and discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1066–1073  相似文献   

19.
Summary: The liquid‐liquid phase separation (LLPS) is often coupled with other ordering processes such as crystallization. In a polyolefin blend system, overwhelming changes in crystallization kinetics due to concentration fluctuation caused by spontaneous spinodal LLPS have been observed. Consequently, we are proposing a new mechanism of “fluctuation‐assisted crystallization”. In this process, the usual nucleation barrier could be overcome (or at least partially) by the spontaneous fluctuation growth of LLPS in the spinodal region.

Time‐resolved polarized optical micrographs for poly(ethylene‐co‐hexene) (PEH)/poly(ethylene‐co‐butene) (PEB) = 40:60 isothermally crystallized at 117 °C for 2 min after LLPS at 135 °C for the times shown and the nucleation rates at 117 °C as a function of LLPS time at 135 °C.  相似文献   


20.
 In view of the enormous difficulties in obtaining reliable experimental data for the purpose of structure simulation with the aid of computer programs (presently being so popular), every classifying endeavor must be considered of great importance. One of the goals of such an endeavor is the demarcation of characteristic temperature ranges. With the aid of thermodynamic considerations an estimate of the restricted temperature range of metastable undercooling, in which the classical theory of homogeneous nucleation, as developed for polymer solutions, is valid also for polymer melts (“thermal nucleation”) can be given. This consideration includes a discussion of the course of the relevant interface tensions along the co-existence lines of the PT diagram. The so-called spinodal crystallization mode (see [1–3]) is found at lower temperatures and seems to be quite common in polymer crystallization. In this connection the so-called athermal nucleation can be identified with a specific process. However, the present author is not in favor of the term “spinodal mode”. This is explained by a comparison with the meaning of spinodal decomposition into two phases in the ordinary gas–liquid phase transition, which always occurs at the lower bound of the metastable undercooling. Remarkably, spinodal decomposition cannot be defined in the same way for the liquid–solid transition. Anyway, the author tries hard to induce unorthodox trains of thought in the hope to revive the discussion of a difficult matter, which has almost gone to sleep, before a satisfying settlement has been reached. Received: 3 June 1997 Accepted: 19 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号