首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An NMR method for the analysis of the ethylene oxide sequence of the acetal copolymer from trioxane and ethylene oxide has not yet been established. We found three novel cyclic compounds composed of 1 mol of ethyelene oxide and 1 mol of trioxane, 2 mol of ethylene oxide and 1 mol of trioxane, and 3 mol of ethylene oxide and 1 mol of trioxane. These compounds gave only one consecutive oxyethylene unit, two consecutive oxyethylene units, and three consecutive oxyethylene units in three consecutive oxymethylene units, respectively, and gave different 1H NMR spectra for each oxyethylene unit. Considering these data, we synthesized three polymeric model compounds that have one consecutive oxyethylene sequence, two consecutive oxyethylene sequences, and three consecutive oxyethylene sequences in an oxymethylene main chain. By a linear combination of the 1H NMR spectrum of each oxyethylene unit of the three polymeric model compounds, we succeeded in determining the ethylene oxide sequence by the 1H NMR method for the copolymer from trioxane and ethylene oxide. Good agreement was observed between the 1H NMR method and the hydrolysis method for the analysis of the ethylene oxide sequences. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3239–3245, 2001  相似文献   

2.
Polymerization of various cyclic ethers by BF3·O(C2H5)2 in the presence of polymeric glycol leads to the formation of hydroxyl terminated block copolymers. Where poly(oxyethylene glycol) is used as the polymeric glycol, fission of the poly(oxyethylene glycol) chain occurs, and block copolymers, containing shorter ethylene oxide unit sequences are obtained. With poly(oxypropylene glycol), on the other hand, the polymer chain remains intact. This may be due to the steric influence of the pendant methyl groups. The cyclic oligomers formed as by-products in the polymerizations are easily removed.  相似文献   

3.
Three series of terephthalate polyesters (copolyesters and terpolyesters) containing 70, 80, and 90 mol % of ethylene glycol respectively, 1,4‐cyclohexanedimethanol (CHDM) and isosorbide in varying ratios, were synthesized by melt polycondensation. It was found that only ~75 mol % of the feeding isosorbide was incorporated in the resulting polyesters and that their content in diethylene glycol oscillated between 2 and 4 mol %. The polyesters had weight‐average molecular weights in the 25,000–33,000 g mol?1 range and polydispersities between 2 and 2.5. The combined 1H and 13C NMR analysis revealed that the microstructure of all these polyesters was at random. They showed good thermal stability with decomposition temperatures above 400 °C. Their glass‐transition temperatures were observed to increase with the content in cyclic diols, this effect being more pronounced when isosorbide was the replacing comonomer. Only the series containing 90 mol % of ethylene terephthalate units was able to crystallize upon cooling from the melt. Compared isothermal crystallizations revealed that isosorbide was more effective than CHDM in repressing the crystallizability of PET. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
The results of the copolymerization of glycolide with cyclic trimethylene carbonate and 2,2‐dimethyltrimethylene carbonate are described. The copolymerization was conducted in the presence of low‐toxicity zirconium(IV) acetylacetonate as an initiator. With this kind of initiator, the composition of the comonomer units in the copolymer chains was assumed to be obtained with high efficiency. Despite significant differences in the comonomer reactivity, in copolymers containing comparable amounts of glycolidyl and carbonate sequences, highly randomized chain structures were observed. This effect resulted from strong intermolecular transesterification that proceeded during the studied copolymerization and caused glycolidyl microblock randomization. The assignment of the spectral NMR lines to appropriate comonomer sequences of polymeric chains was performed in the region of methylene protons of glycolidyl units in 1H NMR spectra of the copolymers and in the carbonyl region of carbon spectra. The equations were formulated for a detailed characterization of the obtained copolymer chains, the average lengths of the blocks, and the transesterification and randomization coefficients. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 98–114, 2006  相似文献   

5.
Dihydrophilic block copolymers of poly(ethylene oxide)‐b‐polyglycidol were prepared and polyglycidol blocks converted into ionic blocks containing  OP(O)(OH)2,  COOH, or  SO3H groups. Although phosphorylation of polyhydroxy compounds with POCl3 usually leads to insoluble products, phosphorylation of poly(ethylene oxide)‐b‐polyglycidol using a POCl3/ OH ratio equal to 1/1 gave soluble products, predominantly monoester of phosphoric acid (after hydrolysis) (provided that the reaction was conducted in triethyl phosphate as solvent). All copolymers were characterized by 1H NMR, 13C NMR, and/or 31P NMR spectra for confirming their structure. The degree of substitution was determined from quantitative 13C NMR spectroscopy (inverted‐gate decoupling‐acquisition mode). Preliminary results indicate that from these three groups of block copolymers the phosphoric acid esters are the most effective ones at least in controlling the growth of CaCO3 crystals in aqueous solution. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 955–963, 2001  相似文献   

6.
We, at Asahi Chemical in Japan, have industrialized three types of polyacetal resins, that is, the acetal homopolymer, copolymer and block copolymer using anionic, cationic and anionic polymerization techniques, respectively. During this industrialization, we observed various phenomena, which were not previously reported. First, the authors outline the three technologies for producing each type of polyoxymethylene from an industrial viewpoint. Next, the authors discuss a newly found reaction during the induction period of the trioxane and ethylene oxide copolymerization. Experimental proof of direct ring expansion between the reaction of trioxane and ethylene oxide is discussed and various novel cyclic compounds are also shown. To the best of our knowledge, this reaction may be the world's first experimental proof of direct ring expansion of the reaction of a cyclic monomer. Third, the authors also discuss the newly founded morphospecific polymer from the copolymerization of trioxane and ethylene oxide using boron trifluoride dibutyl ether as an initiator.  相似文献   

7.
The cationic ring-opening polymerization of trioxane and 1,3-dioxolane was found to be initiated by CO+CIO4? groups on a carbon black surface, which were introduced by the reaction of COCI groups with AgCIO4. The activation energy of the ring-opening polymerization of trioxane was estimated to be 15.5 kcal/mol. In the polymerization system, poly(oxymethylene) and poly(1,3-dioxolane) formed were effectively grafted onto carbon black depending upon the propagation of these polymers from the carbon black surface; for instance, the grafting ratio of poly(oxymethylene) onto carbon black increased with an increase in conversion and went up to about 180%. Although the grafted chain of poly(oxymethylene) was subject to stepwise thermal depolymerization from the chain ends, the thermal stability of poly(oxymethylene)-grafted carbon black was improved by acetylation of hemiformal end groups. The molecular weight of ungrafted poly(oxymethylene) formed in the polymerization was determined to be 1.8–2.0 × 104. Furthermore, the copolymerization of trioxane with 1,3-dioxolane, styrene, and other comonomers initiated by CO+CIO4? groups and the thermal stability of these acetal copolymer-grafted carbon black were investigated.  相似文献   

8.
We report the synthesis and thermosensitive properties of well‐defined water‐soluble polyacrylates and polystyrenics with short pendant oligo(ethylene glycol) groups. Four monomers, methoxydi(ethylene glycol) acrylate (DEGMA), methoxytri(ethylene glycol) acrylate (TEGMA), α‐hydro‐ω‐(4‐vinylbenzyl)tris(oxyethylene) (HTEGSt), and α‐hydro‐ω‐(4‐vinylbenzyl)tetrakis(oxyethylene) (HTrEGSt), were prepared and polymerized by nitroxide‐mediated radical polymerization with 2,2,5‐trimethyl‐3‐(1‐phenylethoxy)‐4‐phenyl‐3‐azahexane as an initiator. Kinetics and gel permeation chromatography analysis showed that the polymerizations were controlled processes yielding polymers with controlled molecular weights and narrow polydispersities. All polymers could be dissolved in water, forming transparent solutions, and undergo phase transitions when the temperature was above a critical point. The thermosensitive properties were studied by turbidimetry and variable‐temperature 1H NMR spectroscopy. The cloud points of the polymers of DEGMA, TEGMA, HTEGSt, and HTrEGSt were around 38, 58, 13, and 64 °C, respectively. For all four polymers, the cloud point increased with decreasing concentration and increasing molecular weight in the studied molecular weight range of 5000–30,000 g/mol. The removal of the nitroxide group from the polymer chain end resulted in a higher cloud point. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2454–2467, 2006  相似文献   

9.
The structure of propylene oxide-ethylene oxide block copolymers prepared with the use of glycerol as an initiator and potassium monoglycerate as a catalyst was studied by NMR spectroscopy. The relative amounts of oxypropylene and oxyethylene monomer units, the functionality-type distribution, the number-average molecular mass, and the ratio between primary and secondary terminal hydroxyl groups were determined. The applicability of 1H and 13C NMR techniques to characterization of these copolymers is discussed. The obtained NMR data are compared with results obtained by other techniques.  相似文献   

10.
The methanolytic degradation of poly(ethylene terephthalate) (PET) copolymers containing nitroterephthalic units was investigated. Random poly(ethylene terephthalate‐co‐nitroterephthalate) copolyesters (PETNT) containing 15 and 30 mol % nitrated units were prepared from ethylene glycol and a mixture of dimethyl terephthalate and dimethyl nitroterephthalate. A detailed study of the influence of the nitro group on the methanolytic degradation rate of the nitrated bis(2‐hydroxyethyl) nitroterephthalate (BHENT) model compound in comparison with the nonnitrated bis(2‐hydroxyethyl) terephthalate (BHET) model compound was carried out. The kinetics of the methanolysis of BHENT and BHET were evaluated with high‐performance liquid chromatography and 1H NMR spectroscopy. BHENT appeared to be much more reactive than BHET. The methanolytic degradation of PET and PETNT copolyesters at 80 °C was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, scanning electron microscopy, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the degradation increased with the content of nitrated units and occurred preferentially by cleavage of the ester groups placed at the meta position of the nitro group in the nitrated units. For both PET and PETNT copolyesters, an increase in crystallinity accompanied methanolysis. A surface degradation mechanism entailing solubilization of the fragmented polymer and consequent loss of mass was found to operate in the methanolysis of the copolyesters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2276–2285, 2002  相似文献   

11.
The one‐pot synthesis of a main chain‐type polyrotaxane composed of axle molecules threaded through the macrocyclic units on the polymer main chain was achieved via the combination of cyclopolymerization and clipping procedures. The cyclopolymerization of an α,ω‐diethynyl monomer bearing an isophthalamide moiety ( 1 ), which clips onto an axle component bearing a pyridiniumdicarboxamide moiety ( 2·Cl ) through a chloride anion was carried out in chloroform with the monomer concentration of 0.06 mol L?1 at 40 °C using [Rh(nbd)Cl]2/Et3N as a catalyst to afford a gel‐free polymer. The resulting polymer was assigned to the main chain‐type polyrotaxane with a poly(phenylacetylene) backbone (poly‐ 3·Cl ) based on size exclusion chromatography and 1H NMR measurements. The diffusion‐order two‐dimensional NMR and circular dichroism spectra provided definitive proof of the rotaxaned architecture in the polymer. The mole fraction of the rotaxane unit in the total cyclic repeating unit was determined to be 26.3%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Half titanocenes (CpCH2CH2O)TiCl2 (1), (CpCH2CH2OCH3)TiCl3 (2), and CpTiCl3 (3), activated by methylaluminoxane (MAO) were tested in copolymerization of ethylene with internal olefins such as cyclopentene. All the catalysts were able to give incorporation of cyclopentene in polyethylene matrix. 13C NMR analysis of obtained copolymers showed that the catalytic systems have low regiospecificity. In fact, in ethylene–cyclopentene copolymers, cyclic olefin inserts with both 1,2 and 1,3‐enchainment. X‐ray powder diffraction analysis of these copolymers confirmed that 1,2 inserted cyclopentene units are excluded from crystalline phase, whereas 1,3‐cyclopentene units are included, giving rise to expansion of unit cell of crystalline polyethylene. Titanium‐based catalysts were investigated also in the copolymerization of ethylene with E and Z‐2‐butene. Only complex (1) was able to give copolymers and 13C NMR analysis of products showed 2‐3, 1‐3, and 1‐2 insertion of 2‐butene. Differential scanning calorimetry analysis displayed that ethylene–cyclopentene, as well as ethylene‐2‐butene, copolymers are crystalline and their melting point decreases by increasing the comonomer content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4725–4733, 2008  相似文献   

13.
A series of imino‐indolate half‐titanocene chlorides, Cp′Ti(L)Cl2 ( C1 – C7 : Cp′ = C5H5, MeC5H4, C5Me5, L = imino‐indolate ligand), were synthesized by the reaction of Cp′TiCl3 with sodium imino‐indolates. All complexes were characterized by elemental analysis, 1H and 13C NMR spectroscopy. Moreover, the molecular structures of two representative complexes C4 and C6 were confirmed by single crystal X‐ray diffraction analysis. On activation with methylaluminoxane (MAO), these complexes showed good catalytic activities for ethylene polymerization (up to 7.68 × 106 g/mol(Ti)·h) and ethylene/1‐hexene copolymerization (up to 8.32 × 106 g/mol(Ti)·h), producing polyolefins with high molecular weights (for polyethylene up to 1808 kg/mol, and for poly(ethylen‐co‐1‐hexene) up to 3290 kg/mol). Half‐titanocenes containing ligands with alkyl substituents showed higher catalytic activities, whereas the half‐titanocenes bearing methyl substituents on the cyclopentadienyl groups showed lower productivities, but produced polymers with higher molecular weights. Moreover, the copolymerization of ethylene and methyl 10‐undecenoate was demonstrated using the C1 /MAO catalytic system. The functionalized polyolefins obtained contained about 1 mol % of methyl 10‐undecenoate units and were fully characterized by several techniques such as FT‐IR, 1H NMR, 13C NMR, DSC, TGA and GPC analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 357–372, 2009  相似文献   

14.
Two novel isophthalic diacid‐based monomers have been synthesized by inclusion in ring position 5 of a functionalized benzoylamine moiety. The functionalization includes a 12‐crown‐4 ether group fused with the benzene subunit and a dipodand substructure, formally a disubstitution of the benzene ring, with two sequences of ethyl‐terminated ethylene oxide units, which represent the open‐chain counterpart of the alicylic crown moiety. The polycondensation of the two diacids with five aromatic diamines yielded 10 new polyamides with crown or podand pendant substructures. The polyamides had previously been chemically characterized by NMR, IR, and elemental analysis. The polymers showed high glass transition temperatures of up to 349 °C, good thermal stability (Tdonset, N2 ≈ 400 °C), and improved solubility in organic solvents. The presence of acyclic or alicyclic oxyethylene sequences as crown ether or podand substructures and an additional amide side group per repeat unit made the polymers essentially amorphous and improved their water absorption ability in comparison with nonsubstituted polyamides. Water uptake values as high as 12% were observed at 65% relative humidity. All the polyamides showed a good film‐forming ability, and the mechanical properties of these films are considered to be satisfactory for experimental aromatic polyamides. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2270–2281, 2006  相似文献   

15.
A comparison of BF3 ·Bu2O and Cl-N2PF6 as catalysts for cationic homopolymerization and copolymerization of trioxane has been made by employing high resolution nuclear magnetic resonance techniques. While no substantial difference was detected for the homopolymerization, two important differences were observed for the copolymerization with ethylene oxide; viz., 1) with Cl-NPF6 there is a lower build-up of formaldehyde concentration; 2) with Cl[sbnd]N2PF6, a lesser amount of cyclic compounds containing ethylene oxide units is formed (e.g., 1,3-dioxolane). Both observations suggest that depolymerization occurs to a lesser extent with the cl-N2PF6 catalyst.  相似文献   

16.
A series of novel cyclic olefin copolymers (COCs), including ethylene/tricyclo[4.3.0.12,5]deca‐3‐ene (TDE), ethylene/tricyclo[4.4.0.12,5]undec‐3‐ene (TUE), and ethylene/tricyclo[6.4.0.19,12]tridec‐10‐ene (TTE) copolymers, have been synthesized via effective copolymerizations of ethylene with bulk cyclic olefin comonomers using bis(β‐enaminoketonato) titanium catalysts ( 1a [PhN?C(CH3)CHC(CF3)O]2TiCl2; 1b : [PhN?C(CF3)CHC(Ph)O]2TiCl2). With modified methylaluminoxane as a cocatalyst, both catalysts exhibit high catalytic activities, producing high molecular weight copolymers with high comonomer incorporations and unimodal molecular weight distributions. The microstructures of obtained ethylene/COCs are established by combination of 1H, 13C NMR, 13C DEPT, HSQC 1H? 13C, and 1H? 1H COSY NMR spectra. DSC analyses indicate that the glass transition temperature (Tg) increases with the enhancement of comonomer volume (TDE < TUE < TTE). High Tg value up to 180 °C is easily attained in ethylene/TTE copolymer with the low content of 35.8 mol %. TGA analyses reveal that these copolymers all possess high thermal stability with degradation temperatures (Td) higher than 370 °C in N2 and air. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3144–3152  相似文献   

17.
A new stratagem for the synthesis of amphiphilic graft copolymers of hydrophilic poly(ethylene oxide) as the main chain and hydrophobic polystyrene as the side chains is suggested. A poly(ethylene oxide) with pending 2,2,6,6‐tetramethylpiperidine‐1‐oxyls [poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide)] was first prepared by the anionic ring‐opening copolymerization of ethylene oxide and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl, and then the graft copolymerization of styrene was completed with benzoyl peroxide as the initiator in the presence of poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide). The polymerization of styrene was under control, and comblike, amphiphilic poly(ethylene oxide)‐g‐polystyrene was obtained. The copolymer and its intermediates were characterized with size exclusion chromatography, 1H NMR, and electron spin resonance in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3836–3842, 2006  相似文献   

18.
Studies on the composition of copolymers obtained by the radiation-induced solid-state postpolymerization of trioxane with 1,3-dioxolane have been carried out. Gas-chromatographic analysis of the reaction mixtures showed that most of the 1,3-dioxolane disappears rapidly from the reaction system in an early stage of polymerization, and that the fraction of ethylene oxide units in the copolymer chain [E] decreases markedly with increasing polymer yield. This finding was confirmed by NMR spectra of the copolymer. DSC thermograms of the copolymer indicated that the relationship between the melting point and the average composition of copolymers prepared in this study differed from that found for copolymers in which comonomer units are distributed statistically in the polymer chain. It was suggested that the copolymer formed by the radiation-induced solid-state postpolymerization of trioxane–1,3-dioxolane is characterized by a heterogeneous distribution of ethylene oxide units in the copolymer chain. It was also found that, in the radiation-induced solid-state postpolymerization of trioxane–1,3-dioxolane, the amount of tetraoxane formation increased linearly with increasing polymer yield. Although it is extremely small compared with that obtained in solution polymerization, it is slightly larger in the trioxane–1,3-dioxolane system than in the trioxane system.  相似文献   

19.
Norbornene–ethylene copolymers were prepared using the metallocene catalyst ethylene bis (indenyl) zirconium dichloride with MAO, and their microstructure was characterized with 1H-NMR and 13C-NMR methods. From a Cosy 1H-NMR spectrum it was found that all norbornene units are enchained in the exo-configuration. The sequence distribution of norbornene units was investigated using 13C-1H correlations, hmqc for one-bond correlations, and hmbc for two- or three-bond correlations. It was shown that norbornene diads were formed at a high norbornene content (45 mol %). When further increasing the norbornene incorporation (66 mol %) a number of new signals were obtained. A Cosy 1H-NMR spectrum revealed a new crosspeak which, according to the corresponding 13C-NMR shifts (hmqc), correlated well with a terminal unit of a trimer of norbornene. This means that at very high norbornene contents, norbornene triads can be formed. Because the formation of isotactic norbornene triads is very difficult to understand from a sterical point of view, an epimerization process causing stereoirregularities in the norbornene triad is proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1633–1638, 1998  相似文献   

20.
Stimuli‐responsive poly[(N‐isopropylacrylamide‐co‐maleic anhydride)‐g‐poly(ethylene oxide)]/poly(ethylene imine) macrobranched macrocomplexes were synthesized by (1) the radical copolymerization of N‐isopropylacrylamide and maleic anhydride with α,α′‐azobisisobutyronitrile as an initiator in 1,4‐dioxane at 65 °C under a nitrogen atmosphere, (2) the polyesterification (grafting) of prepared poly(N‐isopropylacrylamide‐co‐maleic anhydride) containing less than 20 mol % anhydride units with α‐hydroxy‐ω‐methoxy‐poly(ethylene oxide)s having different number‐average molecular weights (Mn = 4000, 10,000, or 20,000), and (3) the incorporation of macrobranched copolymers with poly(ethylene imine) (Mn = 60,000). The composition and structure of the synthesized copolymer systems were determined by Fourier transform infrared, 1H and 13C NMR spectroscopy, and chemical and elemental analyses. The important properties of the copolymer systems (e.g., the viscosity, thermal and pH sensitivities, and lower critical solution temperature behavior) changed with increases in the molecular weight, composition, and length of the macrobranched hydrophobic domains. These copolymers with reactive anhydride and carboxylic groups were used for the stabilization of penicillin G acylase (PGA). The conjugation of the enzyme with the copolymers significantly increased the thermal stability of PGA (three times at 45 °C and two times at 65 °C). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1580–1593, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号