首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copolymers bearing photoacid generating groups and/or photobase generating groups were dyed after UV irradiation with a dye bath containing both an acid dye and a basic dye. Acetophenone O‐acryloyloxime (AAPO) was used as a monomer bearing acyloxyimino (AOI) group that generates a primary amino group upon irradiation, which is followed by hydrolysis. Phenacylsulfonylstyrene (PSSt) and 1,2,3,4‐tetrahydronaphthylideneamino p‐styrenesulfonate (NISS) were chosen as monomers having β‐keto sulfone (β‐KS) and iminosulfonate (IS) groups, respectively, which yielded acid groups when irradiated. Copolymers of AAPO and methyl methacrylate (MMA) were dyed with only the acid dye, and those of PSSt or NISS were dyed with only the basic dye after irradiation. AAPO‐PSSt‐MMA films became dyeable with the acid dye when irradiated for a short time and with the basic dye with further irradiation. However, AAPO‐NISS‐MMA copolymers showed the reverse dyeing behavior. IR spectra revealed that AOI groups were photochemically decomposed prior to the β‐KS groups for AAPO‐PSSt‐MMA, and AOI and IS groups decomposed simultaneously for AAPO‐NISS‐MMA. These results suggested the possibility of adsorption of different ionic dyes on the films by a change of irradiation time; in fact, color patterns could be obtained in a single staining process using the dye bath. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3043–3051, 2000  相似文献   

2.
Most of the photopatterning materials based on epoxy resins utilize photoacid generators (PAGs), which generate superacids as catalysts. They have been used for high aspect ratio photoresists in the fabrication of MEMS devices. However, there is a drawback, in that the acidic species from PAGs will induce metal corrosion. One of the approaches to overcome this problem is the use of photobase generators (PBGs) because organic bases would induce no corrosion. Although there have been many previous investigations of PBGs, only a few articles have mentioned photoreactive materials relying on PBGs because of their low photosensitivity. We report here highly sensitive photopatterning materials comprising PBGs and an epoxy resin bearing carboxylic acid groups. As a result, the photopatterning materials showed higher photosensitivity than conventional epoxy resin systems. We obtained high‐photosensitivity (up to 900 mJ/cm2), high‐resolution (10‐μm line‐and‐space) patterning materials in films, 10 μm in thickness.  相似文献   

3.
This article presents the effect of some ionic photochemical acid generators (PAGs) to inhibit the dissolution of hexafluoroisopropylalcohol (HFA)‐containing polystyrene to an aqueous alkaline developer, which is a highly important effect in photoresist application to enhance resolution of patterning. The dissolution inhibiting factors and mechanisms were investigated by evaluating the solubility and the 1H‐NMR analysis of OH proton in HFA moiety. The dissolution inhibition effect was enhanced when the structures of PAGs fulfill some requirements: (a) their anions should have higher basicity and smaller van der Waals volume; (b) their cations should be stabilized by conjugation with electron‐rich aromatics. In the dissolution inhibition, the HFA moiety interacts with the anionic part of PAGs liberated from the electrostatic interaction with the counter cation. These interactions were predicted and quantified by DFT calculations using Gaussian 09, leading to the rational designs of PAGs with higher dissolution inhibiting effect in photoresist systems. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 531–538  相似文献   

4.
A new series of copolymers was synthesized through the oxidative polymerization of pyrrole (PY) and o‐phenetidine (PHT) with inorganic oxidants in acidic media. The polymerization parameters including the mixing method of the oxidant with the comonomer, the comonomer ratio, the time, the temperature, the oxidant, the organic medium, and the acid were systematically optimized for the synthesis of copolymers with high yields, intrinsic viscosities, and solubility. The resultant copolymers were characterized by elemental analysis, infrared, ultraviolet–visible, solution high‐resolution 1H NMR and solid‐state high‐resolution 13C NMR, circular dichroism spectroscopy, and cyclic voltammetry. The results showed that the PY observed content in the copolymers was much higher than the PY feed content. The regular variation of the polymerization yield, intrinsic viscosity, solubility, macromolecular structure, and electroactivity of the resulting polymers with the comonomer ratio, together with the complete solubility of a PY/PHT (10/90) polymer in highly polar solvents, indicated the formation of real random copolymers containing both PY and PHT units rather than a mixture of two homopolymers. However, the polymers containing more than 59 mol % PY were not homogeneous copolymers consisting of soluble and insoluble parts. A semiquantitative relationship between the polymerization yield or solubility of the copolymers and the polarity index of the organic solvents was examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2073–2092, 2004  相似文献   

5.
Copolymers of phenylacetylene (PA) and p-nitrophenylacetylene (pNPA) with various monomers ratios were prepared and characterized. The solubility of copolymers is dependent on the number of PA units in the chain. They show a good degree of stereoregularity and the MW s are in the 103–105 a.m.u. range, depending on the monomers and catalyst molar ratios. The soluble samples exhibit film-forming properties and the film-surface morphology may be varied by using different solvents. The copolymers give good electrical response to relative humidity variations. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 93–102, 1998  相似文献   

6.
Copolymers bearing pendant O-acyloxime groups were synthesized by two methods: copolymerizations of oxime acrylate (methyl β-naphthyl ketone oxime acrylate or benzophenone oxime acrylate) and styrene, condensation of acrylic acid—styrene copolymer with oximes (benzophenone oxime, p-nitrobenzophenone oxime, methyl β-naphthyl ketone oxime, benzalacetone oxime or 9-fluorenone oxime). The photochemical behavior of the O-acyloxime copolymers changed markedly with the irradiation conditions: irradiation of benzene solutions led to degradation in air and crosslinking under nitrogen, while irradiation of solid films in air resulted in simultaneous degradation and crosslinking. Photolysis of methyl β-naphthyl ketone oxime acetate, a model for the O-acyloxime copolymer, in benzene solution under nitrogen resulted in scission of the N? O bond. The same reaction was observed in the irradiation of the O-acyloxime copolymers. It is suggested that formation of free radicals on the polymer chains via scission of the N? O bond is followed by decarboxylation. In the absence of oxygen, crosslinking of the polymer by recombination of the free radicals competes with degradation via β-scission. In the presence of oxygen, autoxidative degradation predominates.  相似文献   

7.
Poly(o‐aminophenethyl alcohol) and its copolymers containing the aniline unit were synthesized in aqueous hydrochloric acid medium by chemical oxidative polymerization. The chemical composition of these novel polymers was determined spectroscopically, and their viscosities were measured. These polymers exhibit good solubility in organic solvents that is attributed mainly to the polar hydroxyethyl side groups. Their structures (chain conformation and morphological structure) and properties (conductivity, electrochemical characteristics, glass transition, and degradation behavior) were characterized and then interpreted on the basis of the chemical composition along with the electronic and steric hindrance effects associated with the hydroxyethyl side group. Overall, the side group has a significant effect on the polymerization and influences the structure, chain conformation, and properties of the resultant polymer. The poly(aniline‐coo‐aminophenethyl alcohol)s containing 20–40 mol % o‐aminophenethyl alcohol units are potential conducting materials for microelectronic and electromagnetic shielding applications because they are easier to process than polyaniline but retain its beneficial properties. These polymers can also be used as a functional conducting polymer intermediate owing to the reactivity of the side group. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 983–994, 2002  相似文献   

8.
Four D‐π‐A‐type nonionic oxime sulfonate photoacid generators (PAGs) have been designed and synthesized for use in light‐emitting diode (LED) excitable cationic photoinitiators, in which N,N‐diphenylamino was used as electron donor with trifluoroacetophenone‐based oxime sulfonates (trifluoromethanoesulfonate and p‐toluenesulfonate) as electron acceptor and substituted fluorene and biphenyl groups as the π‐conjugated systems. PAG‐Ben‐Tol (with biphenyl and p‐toluenesulfonate) and PAG‐Flu‐Tol (with fluorene and p‐toluenesulfonate) showed high quantum yields of photoacid generation (0.33–0.50) and very good thermal stability (over 250 °C). The absorbance spectra of these PAGs were consistent with the emission spectra of commercially gained UV–visible LED light sources. The potential of these PAGs for cationic photoinitiators was tested in two cationic monomer systems. These PAGs needed low light intensity and low concentration for photopolymerization with high conversions of monomer, for example, over 80%, gained at 3.0 mW cm−2 from 365 to 470 nm LEDs. The photochemical mechanisms of these PAGs are comprehensively investigated and discussed in detail. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1146–1154  相似文献   

9.
Three series of new aromatic polyether sulfones bearing phenyl, p‐tolyl or carboxyl side groups, respectively, and polar pyridine main chain groups were developed. Most of the polymeric materials presented high molecular weights and excellent solubility in common organic solvents. More importantly, they formed stable, self‐standing membranes that were thoroughly characterized in respect to their thermal, mechanical and oxidative stability, their phosphoric acid doping ability and ionic conductivity. Particularly, the copolymers bearing side p‐tolyl or carboxyl groups fulfill all necessary requirements for application as proton electrolyte membranes in high temperature fuel cells, which are glass transition temperatures higher than 220 °C, thermal stability up to 400 °C, oxidative stability, high doping levels (DLs) and proton conductivities of about 0.02 S/cm. Initial single fuel cell results at high temperatures, 160 °C or 180 °C, using a copolymer bearing p‐tolyl side groups with a relatively low DLs around 200 wt % and dry H2/Air feed gases, revealed efficient power generation with a current density of 0.5 A/cm2 at 500 mV. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Photocrosslinkable systems with thermally cleavable properties based on blends of poly(vinyl phenol) (PVP) and diepoxides were investigated. Thermally cleavable diepoxides as crosslinkers were prepared and characterized. As a thermally cleavable linkage, a tertiary ester moiety was incorporated into the crosslinker molecule. PVP/crosslinker blended films containing photoacid generators (PAGs) became insoluble in solvents after UV irradiation and subsequent post‐exposure‐bake (PEB) treatment. With a rise in the PEB temperature, the insoluble fraction of the irradiated films increased, passed through a maximum value, decreased, and increased again at elevated baking temperatures. The insolubilization profiles of the irradiated films were complicated and strongly dependent on the type of PAG used, the structure of the crosslinkers, and the PVP/crosslinker ratio. A mechanism for the thermal degradation was studied with Fourier transform infrared spectroscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3055–3062, 2002  相似文献   

11.
A series of poly(o‐/m‐toluidine‐coo‐/m‐chloroaniline) copolymers of different compositions were synthesized by an emulsion method with ammonium persulfate as the oxidant. The conductivity of the copolymers was two to five orders of magnitude higher than that of the homopolymers poly(o‐toluidine) and poly(m‐chloroaniline). Among the copolymers, the copolymer of o‐toluidine and m‐chloroaniline exhibited a maximum conductivity of 0.14 S cm?1. The conductivity of these copolymers was also higher than that of poly(aniline‐co‐chloroaniline). The properties of the copolymers were greatly influenced by the positions of the substituents and the concentrations of the individual monomers in the feed. All the copolymers were completely soluble in polar solvents such as dimethyl sulfoxide and showed higher heat stability as the chloroaniline concentration increased. These effects could be interpreted in terms of extensive hydrogen bonding and interchain linking and, therefore, higher electron delocalization in these copolymers due to the presence of electron‐rich toluidine rings adjacent to electron‐deficient chloroaniline. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1579–1587, 2005  相似文献   

12.
The study of the electrochemical fluorescence switching properties of the conjugated copolymers containing fluorene, triphenylamine, and 1,3‐diphenylimidazolidin‐2‐one moieties is reported. The polymers show high fluorescence quantum yields, excellent thermal stability, and good solubility in polar organic solvents. While the polymer emits blue light under UV irradiation, the fluorescence intensity is quenched upon electrochemical oxidation. The fluorescent behavior can be reversibly switched between nonfluorescent (oxidized) state and strong fluorescence (neutral) state with a high contrast ratio (If/If0) of 16.3. The role of the electrochemical oxidation of the triphenylamine moieties is to generate the corresponding radical cations that lead to fluorescence quenching in the solid matrix. © 2012 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym Chem, 2012  相似文献   

13.
Carbamoyloxyimino (COI) groups are precursors of photochemically base‐generating groups as well as those of thermally isocyanate‐generating groups. In this study, photochemical and thermal reactions of COI groups in oligomers were investigated by spectral analyses and solubility changes. Oligomers bearing three types of COI groups were prepared. COI groups in all oligomer films were photolyzed on irradiation with 254 nm of light and were deblocked to form isocyanato groups on heating. From the IR spectral analyses, the formation of urea linkage was confirmed by the decrease in isocyanato groups and peak generation because of urea groups on postexposure bake (PEB) treatment. For all oligomer films, PEB was effective for the enhancement of insolubilization of the films in tetrahydrofuran. Heating followed by irradiation was also effective for the insolubilization. These results indicated that photochemical and thermal treatments of COI groups afforded highly sensitive crosslinking systems because of photochemically generated basic groups and thermally generated isocyanato groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2612–2620, 2004  相似文献   

14.
Three new bis(ether‐acyl chloride) monomers, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]cyclohexane ( 1a ), 5,5‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐4,7‐methanohexahydroindan ( 1b ), and 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]fluorene ( 1c ), were synthesized from readily available compounds. Aromatic polybenzoxazoles bearing ether and cardo groups were obtained by the low‐temperature solution polycondensation of the bis(ether‐acyl chloride)s with three bis(aminophenol)s and the subsequent thermal cyclodehydration of the resultant poly(o‐hydroxy amide)s. The intermediate poly(o‐hydroxy amide)s exhibited inherent viscosities in the range of 0.35–0.71 dL/g. All of the poly(o‐hydroxy amide)s were amorphous and soluble in many organic polar solvents, and most of them could afford flexible and tough films by solvent casting. The poly(o‐hydroxy amide)s exhibited glass‐transition temperatures (Tg's) in the range of 141–169 °C and could be thermally converted into the corresponding polybenzoxazoles approximately in the region of 240–350 °C, as indicated by the DSC thermograms. Flexible and tough films of polybenzoxazoles could be obtained by thermal cyclodehydration of the poly(o‐hydroxy amide) films. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility as compared with their poly(o‐hydroxy amide) precursors. They exhibited Tg's of 215–272 °C by DSC and showed insignificant weight loss before 500 °C in nitrogen or air. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4014–4021, 2001  相似文献   

15.
The block copolymerization of tert‐butyl methacrylate (tBMA) with a difunctionalized polystyrene (PS) macroinitiator was investigated. The polymerizations were performed under UV light irradiation using PS bearing α‐ and ω‐functionalized end groups containing diethyldithiocarbamyl groups as a macroiniferter. Kinetic studies indicate the molecular weights of triblock copolymers increased linearly with the conversion. Block copolymers with different lengths of PtBMA segments were easily prepared by varying the ratio of tBMA and PS macroiniferter or by controlling the monomer conversion. The formations of block copolymers were characterized by gel permeation chromatographic, 1H NMR, and DSC analyses. PtBMA segments of the triblock copolymer were subsequently hydrolyzed quantitatively to poly(methacrylic acid) segments using concentrated HCl as a catalyst in a refluxing solution of dioxane, and then an amphiphilic ABA triblock copolymer was produced. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1450–1455, 2001  相似文献   

16.
Poly(o‐aminobenzyl alcohol) (POABA) was grafted with poly(ethylene oxide)s (PEOs) through the reaction of tosylated PEO with both the hydroxide and amine moieties of reduced POABA. Reduced POABA was prepared through the acid‐mediated polymerization of o‐aminobenzyl alcohol, followed by neutralization with an aqueous ammonium hydroxide solution and reduction with hydrazine. The grafted copolymers were very soluble in common polar solvents, such as chloroform, tetrahydrofuran, and dimethylformamide, and the copolymers with longer PEO side chains (number‐average molecular weight > 164) were even water‐soluble. The conductivities of the doped grafted copolymers decreased with increasing PEO side‐chain length because of the nonconducting PEO and its torsional effect on the POABA backbone. The conductivity of highly water‐soluble POABA‐g‐PEO‐350 was 0.689 × 10?3 S/cm, that is, in the semiconducting range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4756–4764, 2004  相似文献   

17.
Starting from 3,5‐diamino benzoic acid, 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzyl ether, an AB2‐type blocked isocyanate monomer with flexible ether group, and 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzoate, an AB2‐type blocked isocyanate monomer with ester group, were synthesized for the first time. Using the same starting compound, 3,5‐bis{(benzoxycarbonyl)imino}benzylalcohol, an AB2‐type blocked isocyanate monomer, was synthesized through a highly efficient short‐cut route. Step‐growth polymerization of these monomers at individually optimized experimental conditions results in the formation of hyperbranched polyurethanes with and without ether and ester groups. Copolymerizations of these monomers with functionally similar AB monomers were also carried out. The molecular weights of the polymers were determined using GPC and the values (Mw) were found to vary from 1.5 × 104 to 1.2 × 106. While hyperbranched polyurethanes having no ether or ester group were found to be thermally stable up to 217 °C, hyperbranched poly(ether–urethane)s and poly(ester–urethane)s were found to be thermally stable up to 245 and 300 °C, respectively. Glass transition temperature (Tg) of polyurethane was reduced significantly when introducing ether groups into the polymer chain, whereas Tg was not observed even up to 250 °C in the case of poly(ester–urethane). Hyperbranched polyurethanes derived from all the three different AB2 monomers were soluble in highly polar solvents and the copolymers showed improved solubility. Polyethylene glycol monomethyl ether of molecular weight 550 and decanol were used as end‐capping groups, which were seen to affect the thermal, solution, and solubility properties of polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3877–3893, 2007  相似文献   

18.
Solubility parameters are certain measurable quantities that are observed to influence the ability of a solvent to fully dissolve a polymer. Current theory partitions the intermolecular forces between dispersion, polar, and hydrogen bonding interactions, thereby generating a three‐dimensional solubility parameter space. The Hansen solubility parameters of a polymer are taken to be the center of a sphere obtained from the best fit of the coordinates of good solvents in the parameter space. Investigations of several polymers (lignin, polyethersulfone, and bitumen) show that the convex hull of all known good solvents in the three‐dimensional parameter space also gives a meaningful interpretation of the solubility region. Several methods for computing the convex solubility parameters of a polymer from the convex solubility region are described. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1089–1097  相似文献   

19.
Films of polymers bearing pendant acyloxyimino (AOI) groups become insoluble when irradiated by ultraviolet light in the presence of p-benzoquinone. Post-heating of these films after irradiation also induces further the insolubilization. In the photocrosslinking, it is deduced that p-benzoquinone serves not only as sensitizer for the decomposition of AOI groups but also as crosslinker during the photo-irradiation and heating after irradiation.  相似文献   

20.
As part of a continuing study of ion-containing polymers, a comparison has been made on styrene-based sulfonate ionomers obtained by two different processes. Copolymers of styrene with sodium styrene sulfonate (SSS) have been compared with corresponding polymers obtained by the sulfonation/neutralization of preformed polystyrene (S–PS). The former system covered a range of sulfonate level from 1 to 30 mol %, while the latter ranged from about 1 to 7 mol %. The characterization of these materials has been conducted using solubility behavior, dilute solution viscometry, thermal mechanical analysis, density measurements, and water adsorption studies. At low (ca. 1%) levels the solubility behavior of the SSS copolymers and the sulfonated polystyrenes were similar. However, at higher sulfonate levels the solubility behavior in different solvents and the dilute solution viscometry were significantly different for the two systems. Similarly, thermal analysis studies (DSC) showed that the glass transition of the sulfonated polystyrene increased linearly with sulfonate level, while the Tg for the SSS copolymer increased modestly, up to about 7 mol % sulfonate content, and then remained constant. Significant differences in the softening behavior and water absorption characteristics were also observed for these two classes of ionomers. Although molecular weights and molecular weight distributions are not now available for these ionomers, the differences in their behavior does not appear to be due simply to differences in molecular weight. It is postulated that the differences in the copolymer and the S–PS ionomers may originate with differences in sulfonate distribution. It is suggested that the SSS monomer units are incorporated as blocks in the copolymer as opposed to a more random distribution in the S–PS ionomer. Indirect evidence in support of his argument is found, for example, in the case of the copolymer in the solubility behavior, the relative independence of Tg on sulfonate concentration and the apparent existence of a second, high temperature transition tentatively attributable to an ion-rich phase. Additional studies are required to confirm this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号