首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First‐generation dendritic macromonomers with a methacryloyl end group on one side, long alkyl chains on the other side, and a biuret system with two urethane groups in the core have been synthesized. The synthesis comprises three steps with hexamethylene diisocyanate uretdione as the starting material. The branching points were introduced via biuret groups and the prepared macromonomers were polymerized by free and controlled radical polymerization. Depending on the reaction conditions linear dendronized polymers as well as branched dendronized polymers and microgels with long alkyl chains were obtained. Scanning force microscopy was used to visualize high molecular weight molecules spincoated on highly oriented pyrolytic graphite. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 614–628, 2007  相似文献   

2.
An elongated structural design leading to more conical-shaped dendritic architectures by using a combination of 1-->3, 1-->(2+1), and 1-->(2+1 Me) C-branched monomers is presented. Synthesis of the conifer-shaped macromolecule was achieved by reaction between isocyanate 20 and amine 26 in dry CH2Cl2. A resultant extended focal adamantane-modified dendron was deprotected to generate the water-soluble product, which was subsequently complexed with beta-cyclodextrin in D2O to create the desired tree-like product. Host-guest interactions of the adamantane moiety with the beta-cyclodextrin cavity were monitored by 1H NMR spectroscopy. All monomers, key intermediates, and final products were fully characterized by 1H and 13C NMR spectroscopy, ESI or MALDI-TOF mass spectrometry, and IR spectroscopy.  相似文献   

3.
4.
The synthesis and characterization of barbiturate‐ and thiobarbiturate‐functionalized polystyrene from polystyrene homopolymer by polymer‐modification reactions is discussed. Polystyrene homopolymer quantitatively functionalized at the para postion with diethyl oxomalonate functionality was subjected to a condensation reaction with urea and thiourea in the presence of sodium methoxide in methanol. This reaction proceeded essentially to quantitative conversion to the barbiturate‐ (BAPS) and thiobarbiturate‐functionalized polystyrenes (TBAPS) as estimated by 1H NMR, UV, and IR spectroscopies. Thus, several copolymers of styrene with barbiturate‐ and thiobarbiturate‐functionalized styrene were synthesized. The detailed characterizations of quantitatively functionalized polystyrene using gel permeation chromatographic, IR, UV, and 1H NMR spectroscopic techniques as well as thermogravimetric analysis are discussed. An application of the newly synthesized polymer in removing Cu(II) ions from aqueous solution is demonstrated. This is the first report on the synthesis of BAPS and TBAPS by the polymer‐modification route or otherwise. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 731–737, 2002; DOI 10.1002/pola.10154  相似文献   

5.
Summary: Dendrons and dendrimers with cationic amino groups at their periphery were successfully synthesized up to the third and second generation, respectively. The results obtained by 1H NMR spectroscopy and gel permeation chromatography analysis supported the formation of the targeted dendrons and dendrimers. The dendrons were grown via ester linkages, which endowed them with biodegradability in D2O at 37 °C. The degradation rate depends upon the steric hindrance and reactivity caused by the bulkiness and compact structure of the dendrons. All of the synthesized dendrons were degraded within a month, while 60% of the ester groups in the sterically crowded dendrimers were degraded over the same time period. The cytotoxicity of the dendrons was evaluated by the MTT assay on a 293T cell line which indicated that the obtained dendrons were completely non‐toxic. These non‐toxic, biodegradable cationic dendrons and dendrimers are believed to have potential applications in the biomedical field.

Synthetic procedure of dendrons and dendrimers.  相似文献   


6.
7.
Traditionally the fluorous phase is generated with perfluorinated alkyl groups that are usually perfluorooctyl or longer and are bioaccummulative and biopersistent and therefore, are considered environmentally unfriendly. Here we report a new concept for the construction of the fluorous phase. This concept is based on the amplification of the fluorous effect with the help of dendritic architectures containing very short semifluorinated groups on their periphery. This new concept was demonstrated by the convergent synthesis of the first and second generation AB3 and AB2 benzyl ether dendrons functionalized on their periphery via catalytic nucleophilic addition of their phenolates to perfluoropropyl vinyl ether. The resulting dendrons are liquids. Their fluorous phase affinity was analyzed and demonstrated that the dendritic architecture amplifies the fluorous phase at a specific generation by the number of functional groups on the dendron periphery, and at different generations by increasing their generation number. Therefore, this concept is very efficient for the design and synthesis of new fluorous materials. In addition, by contrast with dendrons containing perfluoroalkyl groups on their periphery, the current dendrons mediate the disassembly of their parent building blocks but do not mediate the self‐assembly in a supramolecular architecture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2498–2508, 2010  相似文献   

8.
9.
Dendrimers, the aesthetically beautiful macromolecules displaying a variety of potentially useful architecture‐induced properties, are traditionally assembled in solution. However, since 1988, a number of dendritic structures have been assembled on insoluble organic and inorganic polymers, and thus dendronized supports have been formed. One of the major applications of these new materials is in the field of heterogeneous catalysis. Supported dendritic catalytic systems, bearing the catalytic units on the dendron periphery, have been examined in the last 5 years in such reactions as hydroformylation, Heck and other Pd‐catalyzed C? C bond formations, oxidation, and enantioselective addition to aldehydes. In the majority of these studies, substantial dendritic effects on the reactivity, selectivity, or recyclability of the catalysts were observed. Although a number of factors have been suggested as sources of the effects, it is most likely that the phenomenon has a multicomponent origin. Additional research, including a full determination of the effects and their causes, is likely to lead to markedly better heterogeneous catalytic systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 235–262, 2005  相似文献   

10.
Novel macromonomers of polystyrene and poly(tert‐butyl acrylate) containing a methacryloyl group as a polymerizable unit and two chains of the same length were prepared in two steps: the synthesis of the precursors through the atom transfer radical polymerization of styrene and tert‐butyl acrylate initiated by 1‐hydroxymethyl‐1,1‐di[(2‐bromoisobutyryloxy)methyl] ethane and the esterification of the hydroxyl group in the precursors with methacryloyl chloride. The molecular weight and polydispersity of the macromonomers were controllable because of the living nature of the atom transfer radical polymerization. Gel permeation chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and hydrolysis confirmed the structure of the novel macromonomers. The homopolymerization and copolymerization of the macromonomers were investigated to prepare branched copolymers in which two chains were grafted from every repeating unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3887–3896, 2004  相似文献   

11.
发展了新型含有胺基的支化烷基修饰的咔唑单元,并且与芴、咔唑、苯等单元通过Suzuki偶联反应共聚得到不同主链结构的水/醇溶共轭聚合物界面修饰材料,研究了主链结构的变化对材料光物理、电化学性能的影响.所有聚合物均被用作阴极界面材料应用于器件结构为ITO/PEDOT:PSS/P-PPV/界面层/Al的聚合物发光二极管中.在相同器件制备条件下,系统比较了不同主链结构的界面修饰材料在器件中的性能,并研究了性能差异的原因.器件研究结果表明,在高功函数金属Al阴极的聚合物发光二极管中,含胺基功能化咔唑单元的水/醇溶共轭聚合物材料由于界面偶极的形成,均表现出很好的电子注入/传输性能,与之对应的器件性能得到大幅提升.  相似文献   

12.
Organometallic polymers containing metallacycles in the main chain were prepared by the reactions of diynes with low-valent organometallic complexes such as CpCo(PPh3)2, CP2Ti(CH2=CHC2H5), and (iPrO)2Ti(CH2=CHCH3). Their polymer reactions involving the conversion of the main chain structures gave rise to polymers containing functional groups in their main chain repeating units. Design and synthesis of organometallic polymers that potentially serve as novel functional materials are also described.  相似文献   

13.
Dendritic multifunctional macroinitiators having 12 TEMPO‐based alkoxyamines were prepared by the reaction of a benzyl alcohol having 4 TEMPO‐based alkoxyamines with 1,3,5‐tris[(4‐chlorocarbonyl)phenyl]benzene and 1,3,5‐tris(4‐isocyanatophenyl)benzene. Using the dodecafunctional macroinitiators, TEMPO‐mediated radical polymerizations of styrene (St) were carried out at 120 °C, and 12‐arm star polymers ( star‐12 ) with narrow polydispersities of Mw/Mn = 1.06–1.26 were obtained. To evaluate the livingness for the TEMPO‐mediated radical polymerizations of St, hydrolysis of the ester bonds of the 12‐arm star polymers and subsequent SEC measurements were carried out. Furthermore, using star‐12 as the macroinitiator, TEMPO‐mediated radical polymerization of 4‐vinylpyridine (4‐VP) was carried out, and well‐defined poly(St)‐b‐poly(4‐VP) 12‐arm star diblock copolymers with Mw/Mn = 1.18–1.19 were obtained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3689–3700, 2005  相似文献   

14.
A new bis-allyloxy functionalized ATRP initiator, viz, 4,4-bis (4-(allyloxy) phenyl) pentyl-2-bromo-2-methylpropanoate was synthesized starting from commercially available 4,4-bis (4-hydroxyphenyl) pentanoic acid. Atom transfer radical polymerization of styrene in bulk and that of methyl methacrylate in anisole using CuBr/N,N,N′,N′,N″-pentamethyldiethylenetriamine system was carried out. The kinetic study of styrene polymerization showed controlled polymerization behavior. Bis-allyloxy functionalized well-defined polystyrene (MnGPC: 13,600–28,250, PDI: 1.07–1.09) and poly (methyl methacrylate) (MnGPC: 10,100–18,450, PDI: 1.23–1.34) macromonomers were obtained. The presence of allyloxy functionality was confirmed by 1H NMR spectroscopy. The reactivity of allyloxy functionality was demonstrated by carrying out organic reactions such as addition of bromine and hydrosilylation on polystyrene macromonomer. Polystyrene macromonomer with bis-allyloxy functionality was transformed into bis-epoxy functionalized polystyrene macromonomer using 3-chloroperoxybenzoic acid.  相似文献   

15.
Side chain engineering has been used for tuning the opto-electronic properties of organic semiconductors. In this work, a series of pyrimidine-based donor-acceptor (D-A) conjugated polymers functionalized with electron-withdrawing or electron-donating side chains were synthesized. The opto-electronic properties of the pyrimidine D-A conjugated polymers were investigated focusing on the dependence on the electron withdrawing strength of the acceptor moiety, while maintaining the same donor moiety. Fine-tuning of the energy levels was achieved by introducing electron donating (alkoxy [ OR] and alkylthio [ SR]) or electron withdrawing (alkylsulfinyl [ SOR] and alkylsulfonyl [ SO2R]) side chains onto the acceptor moiety. The effects of side chain modification have been investigated through DFT calculations, UV–vis analysis, and electrochemical measurements. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2547–2553  相似文献   

16.
Narrow- or monodisperse core-shell polymer microspheres with a dense core and a lightly crosslinked shell with different functional groups, such as ester, hydroxyl, cyano, were prepared by two-stage distillation-precipitation polymerization without any stabilizer. Commercial divinylbenzene (DVB), containing 80% of DVB was polymerized by distillation-precipitation polymerization with 2,2′-azobis(2-methyl propionitrile) (AIBN) as initiator in neat acetonitrile in the absence of any stabilizer as the first stage polymerization and used as the core. When the conversion of DVB was about 35% in the first stage, the second-comonomers with different functional groups, such as methyl methacrylate (MMA), ethyl methacrylate (EMA), butyl methacrylate (BMA), 2-hydroxyethyl methacrylate (HEMA), i-octyl acrylate (i-OA), dodecyl acrylate (DA), methyl acrylate (MA), ethyl acrylate (EA), ethylene glycol dimethacrylate (EGDMA), triethyleneglycol dimethacrylate (TEGDMA), trimethylolpropane trimethacrylate (Trim), and acrylnitrile (AN) together with AIBN were introduced, respectively, into the reaction system and copolymerized with unreacted DVB on the core surface to form a lightly crosslinked functional shell. The resulting core-shell polymer particles were characterized with scanning electron microscopy (SEM) and FT-IR spectra.  相似文献   

17.
This article presents a new strategy for synthesizing a series of well‐defined macromonomers. Bromine‐terminated polystyrene and poly(t‐butyl acrylate) with predetermined molecular weights and narrow distributions were prepared through the atom transfer radical polymerization of styrene and t‐butyl acrylate initiated with ethyl 2‐bromoisobutyrate. Then, azido‐terminated polymers were obtained through the bromine substitution reaction with sodium azide. Catalyzed by CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine, the azido end group reacted with propargyl methacrylate via a 1,3‐dipolar cycloaddition reaction, and ω‐methacryloyl‐functionalized macromonomers were thus obtained. The end‐group transformation yields were rather high, as characterized by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra and 1H NMR analysis. By this effective and facile approach, some novel macromonomers that otherwise are difficult to achieve, such as poly(ethylene oxide)‐block‐polystyrene, were easily prepared. Radical homopolymerizations of these macromonomers were performed, and a series of comb polymers were prepared. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6103–6113, 2006  相似文献   

18.
19.
Dendritic rod structures can be formed via the branching of dendritic elements from a primary polymer backbone; such systems present an opportunity to create nanoscale material structures with highly functional exterior regions. In this work, we report for the first time the synthesis of a hybrid diblock copolymer possessing a linear–dendritic rod architecture. These block copolymers consist of a linear poly(ethylene oxide)–poly(ethylene imine) diblock copolymer around which poly(amido amine) branches have been divergently synthesized from the poly(ethylene imine) block. The dendritic branches are terminated with amine or ester groups for the full generations and half‐generations, respectively; however, the methyl ester terminal groups can also be readily converted into alkyl groups of various lengths, and this allows us to tune the hydrophilic/hydrophobic nature of the dendritic block and, therefore, the amphiphilic properties of the diblock copolymer and its tendencies toward microphase separation. The block copolymers exhibit semicrystallinity due to the presence of the poly(ethylene oxide) block; however, as the polymer fraction consisting of poly(ethylene oxide) decreases, the overall crystallinity also decreases, and it approaches zero at generation 2.0 and higher. The unfunctionalized block copolymers show weak phase segregation in transmission electron microscopy and differential scanning calorimetry at all generations. The addition of n‐alkyl chains increases phase segregation, particularly at high alkyl lengths. The generation 3.5 polymer with n‐dodecyl alkyl substitution has a rodlike or wormlike morphology consisting of domains of 4.1 nm, equivalent to the estimated cross section of the individual polymer chains. In this case, the nanometer scale of the polymer chains can be directly observed with transmission electron microscopy. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2784–2814, 2004  相似文献   

20.
Dendritic carbosilanes containing 48 and 96 functional groups on the periphery were prepared. The reaction of the fourth and fifth parent dendritic generations (G4‐48Cl and G5‐96Cl) with alcohol [9‐anthracene methanol, 8‐hydroxyquinoline, 4‐hydroxyazobenzene, 2‐hydroxymethylanthraquinone, and 5‐(2‐hydroxyethyl)‐4‐methylthiazole] in the presence of 1,1,2,2‐tetramethylethyenediamine produced end‐functionalized dendrimers with very high yields. The polydispersity indices of the prepared dendrimers revealed unchanged narrow values between the fourth and fifth generations. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 326–333, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号