首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the structure and properties of segmented poly(urethaneurea) (SPUU) with relatively short hard‐segment chains. The SPUU samples comprised poly(tetramethylene glycol) prepolymer as a soft segment and 4,4′‐diphenylmethane diisocyanate (MDI) units as a hard segment that were extended with ethylenediamine. To discuss quantitatively the conformation of the soft‐segment chain in the microphase‐separated domain space, we used SPUU samples for which the molecular weights of the hard‐ and soft‐segment chains are well characterized. The effects of the cohesive force in the hard‐segment chains on the structure and properties of SPUU were also studied with samples of different chain lengths of the hard segment, although the window of xH, the average number of MDI units in a hard‐segment chain, was narrow (2.38 ≤ xH ≤ 2.77). There were urethane groups in the soft segments and urea groups in the hard segments. Because of a strong cohesive force between the urea groups, we could control the overall cohesive force in the hard‐segment chains by controlling the chain lengths of the hard segment. First of all, microphase separation was found to be better developed in the samples with longer hard‐segment chains because of an increase of the cohesive force. It was also found that the interfacial thickness became thinner. The long spacing for the one‐dimensionally repeating hard‐ and soft‐segment domains could be well correlated with the molecular characteristics when the assumption of Gaussian conformation was employed for the soft‐segment chains. This is unusual for strongly segregated block copolymers and might be characteristic of multiblock copolymers containing rod–coil chains. The tensile moduli and thermal stability temperature, TH, increased with an increase of the cohesive force, whereas the glass‐transition temperature, the melting temperature, and the degree of crystallinity of the soft‐segment chains decreased. The increase in TH especially was appreciable, although the variation in the chain length of the hard segment was not profound. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1716–1728, 2000  相似文献   

2.
Using a real space implementation of the self‐consistent field theory, we calculated the morphology and interactions of spherical nanoparticles with radius Rp that are grafted by polymer chains of N monomers immersed in a chemically identical polymer melt of polymerization index P. The calculation shows that, for big particles (Rp ? N1/2a, with a the segment size), the interactions and density profiles of the grafted layers are that of brushes at flat interface; While for small particles (Rp ? N1/2a), the interactions and density profiles are characteristic of star polymers. In the case of intermediate grafted chain lengths, that is, RpN1/2a, we found that the grafting density of the polymers and the radius of the spherical nanoparticles are both important in determining the structure and interactions of the grafted layers. Our findings suggest possible ways to tailor the structure and interactions of the nanoparticles to benefit the fabrication of polymeric nanocomposites. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2811–2820, 2006  相似文献   

3.
In this paper, the authors investigated the adsorption phenomenon of compact chains confined between two parallel plane boundaries using a pruned‐enriched Rosenbluth method. The authors considered three cases with different adsorption energies of ε = 0, ?1, and ?3 (in units of kBT) for the confined compact chains of different chain lengths N, respectively. Several parameters were employed to describe the size and shape of compact chain, and some special behaviors in the conformational structures were investigated for the first time. For example, the size and shape of confined compact chains undergo distinct changes in the adsorption cases of ε = ?1 and ?3, and pass through the maximum values at the characteristic distances Dc. The authors found that this characteristic distance Dc could be scaled as Dc~ (N + 1)ν (ν = 0.56 ± 0.01) in the case of ε = ?3. In addition, the microstructures of chains were investigated, and several significant results were obtained by analyzing the segment density distribution and the mean fractions of segment in tails, trains, bridges, and loops structures. On the other hand, the thermodynamic properties were also investigated for the confined compact chains, such as average energy per bond, Helmholtz free energy per bond, and elastic force per bond. Results show that elastic forces f have different behaviors in three cases, indicating that it is not necessary to exert an external force on the boundaries in the nonadsorption case. At the same time, the average contact energy of compact chain obviously changes when the distance between the two parallel boundaries D increases, which is similar to those of the size and shape parameters. The authors also conclude that these thermodynamic properties of compact chains depend strongly on not only the adsorption energies but also the chain lengths and the confined condition. In addition, several results of the conformational and thermodynamic parameters, such as the segment density distribution and free energy, were compared with the results from the self‐consistent field theory. These investigations may help us to deepen the knowledge about the adsorption phenomenon of confined compact chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2888–2901, 2006  相似文献   

4.
A polyimide‐graft‐polystyrene (PI‐g‐PS) copolymer with a polyimide backbone and polystyrene side chains was synthesized by the “grafting from” method using styrene polymerization on a polyimide multicenter macroinitiator via ATRP mechanism. The side chain grafting density z = 0.86 of PI‐g‐PS is rather high for graft‐copolymers synthesized by the ATRP method. Molecular characteristics and solution behavior of PI‐g‐PS were studied in selective solvents using light scattering and viscometry methods. In all solvents, the backbone tends to avoid contact with a poor solvent. To describe the conformation and hydrodynamic properties of PI‐g‐PS macromolecules in thermodynamically good solvents for side chains and PI‐g‐PS, the wormlike spherocylinder model is used. Macromolecules of the studied graft‐copolymer are characterized by high equilibrium rigidities (Kuhn segment length >20 nm). In Θ‐conditions, PI‐g‐PS macromolecules may be modeled by a rigid prolate ellipsoid of revolution with a low asymmetry form and a collapsed backbone as the ellipsoid core. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1539–1546  相似文献   

5.
Conducting polymers demonstrate low solubility in organic solvents. Introducing aliphatic substituents into polymer chains improves their solubility, but may also lead to changes in conformational characteristics of macromolecules. In the present work, the studies of hydrodynamic properties and conformational characteristics of comb‐shaped poly(3‐hexylthiophene) with aliphatic side substituents were carried out in chloroform solutions. Conformational analysis of the studied macromolecules was performed for the first time using homologous series with a wide range of molecular weights of the polymers in dilute solutions. The hydrodynamic properties of these macromolecules were interpreted using the worm‐like spherocylinder model and the straight spherocylinder model. The projection of the monomer unit in the direction of the main polymer chain λ = 0.37 nm was determined experimentally. The following parameters of poly(3‐hexylthiophene) were characterized and quantified: equilibrium rigidity (Kuhn segment length) А = 6.7 nm and hydrodynamic diameter of a polymer chain d = 0.6 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 875–883  相似文献   

6.
The heterochain crosslinking model describes nonrandom crosslinking of polymer chains and is an extension of the classical Flory/Stockmayer gelation theory. We consider the postgelation relationship for the system consisting of N types of polymer chains, in which the probability that a crosslink point on an i‐type chain is connected to a j‐type chain is explicitly given by pij. The analytical solutions for the weight fraction of the sol, the number‐average and weight‐average molecular weights within the sol fraction, and the crosslinking density within the sol and gel fractions are derived for the systems, with each type of chain conforming to the Schulz–Zimm distribution. Illustrative calculations are shown for the systems consisting of two and three types of chains, and the obtained results agree with those from the Monte Carlo method. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2333–2341, 2000  相似文献   

7.
A detailed comparison is made between the experiment, prior simulations by other groups, and our simulation based on a newly designed dynamic Monte Carlo algorithm, on the dynamics of polyethylene (PE) melts. The new algorithm, namely, noncross random two-bead move has been developed on a high coordination lattice (the 2nnd lattice) for studying the dynamics of realistic polymers. The chain length (molecular weight) in our simulation ranges from C40 (562 Da) to C324 (4538 Da). The effects of finite chain length have been confirmed and significant non-Gaussian statistics evidently results in nonstandard static and dynamic properties of short PE chains. The diffusion coefficients scale with molecular weight (M) to the −1.7 power for short chains and −2.2 for longer chains, which coincides very well with experimental results. No pure Rouse scaling in diffusion has been observed. The transitional molecular weight to the entanglement regime is around 1500 Da. The detailed mean square displacements of middle bead (g1) are presented for several chain lengths. The reptation-like slowdown can be clearly observed only above M ∼ 2400 Da. The slope 0.25 predicted by the theory for the intermediate regime is missing; instead a slope close to 0.4 appears, indicating that additional relaxation mechanism exists in this transitional region. The relaxation times extracted by fitting the autocorrelation function of end-to-end vectors with reptation model scale with M to 2.5 for long chains, which seemingly conflicts with the scaling of diffusion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2556–2571, 2006  相似文献   

8.
It is now well established that controlling the grafted chain lengths and densities on nanoparticle surfaces determines the effective interactions between particles, and their assembly. Here, we present unusual kinetic results for achieving grafted chain lengths longer than the free chains using reversible addition‐fragmentation chain transfer (RAFT) polymerization and discuss the limitations to obtaining polymer grafting density higher than ~0.06 chains/nm2. We observe that surface initiated polymerization grows faster than the free chains in solution with high RAFT agent coverage (1.95 agents/nm2) on nanoparticles. The time‐dependence of graft density suggests that activation of the anchored chain transfer agent (CTA) is limited by the diffusion of macro‐radicals within growing grafts. Thus, radical transfer and exchange reactions become inefficient between grafts and free polymer, and convert the surface‐initiated RAFT mechanism to a free radical polymerization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1700–1705  相似文献   

9.
Monte Carlo computer simulations of end-tethered chains grafted onto a hard wall have been performed. The chains were modeled as self-avoiding chains on a cubic lattice at athermal solvent conditions. The simulations spanned a wide range of chain lengths, N (100–1000, i.e., up to molecular weights of a few hundred thousands), and anchoring densities, σ (2 × 10−4 to 0.4), to properly chart the relevant parameter space. It is shown that the reduced surface coverage σ* = σπR is the most appropriate variable that quantitatively determines the mushroom, overlapping mushroom and brush regimes, where Rg is the radius of gyration of a free chain in solution. The simulation data are analyzed to determine the conformational characteristics and shape of the anchored chains and to compare them with the predictions of the analytical self consistent field theory. The strong stretching limit of the theoretical predictions is obtained only for σ* > 8. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:2449–2461, 2009  相似文献   

10.
Coarse‐grained molecular dynamics simulations are used to investigate the adsorption behavior of monodisperse and bidisperse polymer chains on the nanoparticle (NP) surface at various polymer–NP interactions, chain lengths, and stiffness. At a strong polymer–NP interaction, long chains preferentially occupy interfacial region and squeeze short chains out of the interfacial region. Semiflexible chains with proper stiffness wrap NPs dominantly in a helical fashion, whereas fully flexible chains constitute the surrounding matrix. As chain stiffness increases, the results of the preferential adsorption are the opposite. The chain‐length or chain‐stiffness‐induced selective adsorption behavior of polymer chains in the polymer–NP interfacial region relies on a delicate competition between entropic and enthalpic contributions to the total free energy. These results could provide insights into polymer–NP interfacial adsorption behavior and guide the design of high‐performance nanocomposites. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1829–1837  相似文献   

11.
We present a statistical mechanical theory for polymer–solvent systems based on integral equations derived from the polymer Kirkwood hierarchy. Integral equations for pair monomer–monomer, monomer–solvent, and solvent–solvent correlation functions yield polymer–solvent distribution, chain conformation in three dimensions, and scaling properties associated with polymer swell and collapse in athermal, good, and poor solvents. Variation of polymer properties with solvent density and solvent quality is evaluated for chains having up to 100 bonds. In good solvents, the scaling exponent v has a constant value of about 0.61 at different solvent densities computed. For the athermal solvent case, the gyration radius and scaling exponent decrease with solvent density. In a poor solvent, the chain size scales as Nv with the value of the exponent being about 0.3, compared with the mean field value of ⅓. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3025–3033, 1998  相似文献   

12.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

13.
Copolymers of ethene and 1‐octene, 1‐dodecene, 1‐octadecene, and 1‐hexacosene were carried out with [Ph2C(2,7‐di‐tertBuFlu)(Cp)]ZrCl2/methylalumoxane as a catalyst to obtain short‐chain branched polyethylenes with branch lengths of 6–26 carbon atoms. This catalyst provided high activity and a very good comonomer and hydrogen response. In this study, the influence of the length and number of the side chains on the mechanical properties of the materials was investigated. The crystalline methylene sequence lengths of the copolymers and lamellar thicknesses were calculated after the application of a differential scanning calorimetry/successive self‐annealing separation technique. By dynamic mechanical analysis, the storage modulus as an indicator of the stiffness and the loss modulus as a measure of the effect of branching on the α and β relaxations were studied. The results were related to the measurements of the polymer density and tensile strength to determine the effect of longer side chains on the material properties. The hexacosene copolymers had side chains of 24 carbons and remarkable material properties very different from those of conventional linear low‐density polyethylenes. The side chains of these copolymers crystallized with one another and not only parallel to the backbone lamellar layer, depending on the hexacosene concentration in the copolymer. The side chains crystallized even at low hexacosene concentrations in the copolymer. A transfer of these results to 16 carbons side chains in ethene–octadecene copolymers was also possible. © 2006 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1600–1612, 2006  相似文献   

14.
We report the facile synthesis and characterization of a class of thienothiophene polymers with various lengths of alkyl side chains. A series of 2‐alkylthieno[3,4‐b]thiophene monomers (Ttx) have been synthesized in a two‐step protocol in an overall yield of 28–37%. Poly(2‐alkylthieno[3,4‐b]thiophenes) (PTtx, alkyl: pentyl, hexyl, heptyl, octyl, and tridecyl) were synthesized by oxidative polymerization with FeCl3 or via Grignard metathesis (GRIM) polymerization methods. The polymers are readily soluble in common organic solvents. The polymers synthesized by GRIM polymerization method (PTtx‐G) have narrower molecular weight distribution (?) with lower molecular weight (Mn) than those synthesized by oxidative polymerization (PTtx‐O). The band structures of the polymers with various lengths of alkyl side chains were investigated by UV–vis spectroscopy, cyclic voltammetry, and ultraviolet photoelectron spectroscopy. These low‐bandgap polymers are good candidates for organic transistors, organic light‐emitting diodes, and organic photovoltaic cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319  相似文献   

16.
The adhesion between a glassy polymer melt and substrate is studied in the presence of end‐grafted chains chemically attached to the substrate surface. Extensive molecular dynamics simulations have been carried out to study the effect of the areal density ∑ of tethered chains and tensile pull velocity v on the adhesive failure mechanisms. The initial configurations are generated using a double‐bridging algorithm in which new bonds are formed across a pair of monomers equidistant from their respective free ends. This generates new chain configurations that are substantially different than the original two chains such that the systems can be equilibrated in a reasonable amount of cpu time. At the slowest tensile pull velocity studied, a crossover from chain scission to crazing is observed as the coverage increases, while for very large pull velocity, only chain scission is observed. As the coverage increases, the sections of the tethered chains pulled out from the interface form the fibrils of a craze that are strong enough to suppress chain scission, resulting in cohesive rather than adhesive failure. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 199–208, 2004  相似文献   

17.
This article describes the synthesis and molecular characterization of thermal polymeric iniferters, based on hydroxy‐terminated poly(tetrahydrofuran) (PTHF), bearing thiuram disulfide groups along the chain. Thermal polymerization after the addition of styrene (S) and N‐methylmaleimide (MI) to these PTHF‐based polymeric iniferters yielded segmented PTHF (SMI‐block‐PTHF)n block copolymers that proved to have a single Tg. The multiblock copolymers were molecularly characterized by elemental analysis, IR, and NMR. The thermal stability, as checked by thermogravimetric analysis, proved to be good up to about 350 °C. A size exclusion chromatography/differential viscosity (DV) analysis showed that the molecular weights of the synthesized single‐phase multiblock copolymers were sufficiently high (several times the estimated molecular weight between two adjacent entanglements) to determine the entanglement density from the rubbery plateau modulus, for which the method developed by S. Wu (J Polym Sci Part B: Polym Phys 1989, 27, 723–741) was applied. The entanglement density of flexibilized SMI proved to be about 20–25% higher than that of the nonflexibilized SMI. This increase is disappointing, and more work, based on the described concept, is required to achieve the desired enhancement of the toughness. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3558–3568, 2000  相似文献   

18.
A novel method for preparing organosoluble and conducting polyaniline (PANI) is presented. It is demonstrated that Cu(II) is an excellent catalyst for the polymerization of aniline by air oxygen in aqueous emulsions. Reactions carried out at 0 °C or at room temperature yield PANIs of reasonably high molecular weights (number‐average molecular weight = 23,000–114,000 Da) in an emeraldine base form that are soluble in many organic solvents, such as tetrahydrofuran, dimethylformamide, N‐methylpyrrolidinone, chloroform, and acetone. Spectroscopic investigations (ultraviolet, Fourier transform infrared, and 1H NMR) have shown that PANI obtained by this procedure has the same structure as those prepared by the conventional persulfate oxidation method. The resulting PANIs show reasonable electronic conductivities (0.067–0.320 S cm?1) upon doping with p‐toluenesulfonic acid or dodecyl benzene sulfonic acid. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6025–6031, 2006  相似文献   

19.
The systematic optimization of the chemical structure of low‐bandgap (LBG) donor‐acceptor polymeric semiconductors is a challenging task for which accurate guidelines are yet to be determined. Several different structural and molecular parameters are crucial ingredients for obtaining LBG polymers that simultaneously possess high power conversion efficiencies, good processability in common organic solvents, and enhanced stability in organic photovoltaic devices. In this work, we present an extensive structure–optoelectronic properties–solar cell performance study on the emerging class of diketopyrrolopyrrole‐based LBG polymers. In particular, we investigate alkyl side chain positioning by introducing linear alkyl side chains into two different positions (α‐ and β‐), and the distance of the electron rich and electron deficient monomers within the repeat units of the polymer chain. We demonstrate that anchoring linear alkyl side chains to the α‐positions and introducing fused moieties into the polymer backbone, can be beneficial toward maintaining photocurrents similar to the unsubstituted derivative, and concurrently exhibit better processabiliy in common organic solvents. These results can provide a design rationale towards further optimization of semiconducting polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 138–146  相似文献   

20.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号