首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamide-6 nanocomposites were prepared from a new phosphonium organoclay obtained at pilot scale in supercritical carbon dioxide (scCO2) and a commercially available ammonium modified-silicate. The composites were homogenised by twin-screw extrusion, then specimens for testing were prepared by injection moulding. The clay content of the composites was varied from 0 to 7 vol.% in 7 steps. The clays were characterised in detail; they differed in their surface coverage and gallery structure, while their particle size was similar and their surface energy differed only slightly. X-ray diffraction, electronic microscopy and rheology were used for the characterisation of composite structure. Different gallery structure of the clays led to dissimilar extent of exfoliation. The phosphonium organoclay exfoliated better in PA than the silicate treated with the ammonium salt in spite of its smaller surface coverage. The nanocomposites showed the usual complex structure: besides individual platelets and intercalated stacks, large particles were also present and the development of a silicate network could be shown at large clay contents. Quantitative determination of the extent of reinforcement revealed two determining factors: contact surface and strength of interaction. The first increases with exfoliation, but the latter decreases as an effect of organophilisation. The extent of exfoliation was also estimated quantitatively, and the calculation confirmed the results of qualitative evaluation showing larger extent of exfoliation for the scCO2-prepared phosphonium clay.  相似文献   

2.
This paper addresses the effects of operating variables on mechanical properties of polyurethane/clay nanocomposites including tensile strength, abrasion resistance, and hardness. The variables were prepolymer type, clay cation, clay content, and prepolymer–clay mixing time. The experiments were carried out based on the design of experiments using Taguchi methods. The nanocomposites were synthesized via in situ polymerization starting from two different types of prepolymers (polyether‐ and polyester‐types of polyol reacted with toluene diisocyanate), and methylene‐bis‐ortho‐chloroanilline (MOCA) as a chain extender/hardener. Montmorillonite with three types of cation (Na+, alkyl ammonium ion, and MOCA) were examined. Among the parameters studied, prepolymer type and clay cation have the most significant effects on mechanical properties. Polyester nanocomposites showed larger improvements in mechanical properties compared to polyether materials due to higher shear forces exerted by polymer matrix on clay aggregates during polymer–clay mixing. The original MMT with Na+ cation results in weak improvements in mechanical properties compared to organoclays. It is observed that the stress and elongation at break, and abrasion resistance of the nanocomposite samples can be optimized with 1.5% of clay loading. The morphology and chemical structure of the optimum sample were examined by X‐ray diffraction and FT‐IR spectroscopy, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The glass transition is an old physical problem. It has been accepted that there is a cooperatively rearranging region related to dynamic heterogeneity when temperature approaches the glass transition. However, there is no consensus with the characteristic length and the size of cooperatively rearranging region. This paper first employs the clay gallery in polymer/clay intercalated nanocomposites as a confined two-dimensional (2D) space to assess the characteristic length of dynamic glass transition. The five kinds of clays with different d-spacings were used to investigate the confinement effect. Theoretical calculation based on Donth's formula suggests that the characteristic lengths of polyol and polyol-based polyurethane are ∼3.20 and ∼1.45 nm, respectively. The experimental results agree with theoretical prediction using Donth's formula. The characteristic length varies with polymer types.  相似文献   

5.
The compatibilization effects provided by ammonium terminated PMMA(PMMA‐t‐NH3+) on monomer casting polyamide6 (MCPA6)/clay(pristine sodium montmorillonite) nanocomposites were studied in this article. PMMA‐t‐NH3+ used in this study was prepared by radical polymerization using 2‐aminoethanethiol hydrochloride as chain transfer agent. MCPA6/clay/PMMA‐t‐NH3+ nanocomposites were prepared by in situ anionic ring‐opening polymerization of ε‐caprolactam. X‐ray diffraction and transmission electron microscopy plus rheological measurement were used to characterize those nanocomposites. The results indicated that PMMA‐t‐NH3+ would be a good compatibilizer for this system. With PMMA‐t‐NH3+ content increasing, a better dispersion of clay was successfully achieved in the MCPA6 matrix. Furthermore, analysis using differential scanning calorimetry indicated that well dispersed clay layers limited the mobility of the MCPA6 molecule chains to crystallize, reduce the crystalline degree, and favor the formation of the γ‐crystalline form of the MCPA6 matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1802–1810, 2008  相似文献   

6.
X‐ray diffraction and differential scanning calorimeter (DSC) methods have been used to investigate the crystallization behavior and crystalline structure of hexamethylenediamine (HMDA)‐modified maleic‐anhydride‐grafted polypropylene/clay (PP‐g‐MA/clay) nanocomposites. These nanocomposites have been prepared by using HMDA to graft the PP‐g‐MA (designated as PP‐g‐HMA) and then mixing the PP‐g‐HMA polymer in hot xylene solution, with the organically modified montmorillonite. Both X‐ray diffraction data and transmission electron microscopy images of PP‐g‐HMA/clay nanocomposites indicate that most of the swellable silicate layers are exfoliated and randomly dispersed into PP‐g‐HMA matrix. DSC isothermal results revealed that introducing 5 wt % of clay into the PP‐g‐HMA structure causes strongly heterogeneous nucleation, which induced a change of the crystal growth process from a three‐dimensional crystal growth to a two‐dimensional spherulitic growth. Mechanical properties of PP‐g‐HMA/clay nanocomposites performed by dynamic mechanical analysis show significant improvements in the storage modulus when compared to neat PP‐g‐HMA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3242–3254, 2005  相似文献   

7.
Exfoliated polyamide‐6 (PA6)/organically modified montmorillonite clay (OMMT) nanocomposites (PNs) were modified with partially maleinized styrene–ethylene/butadiene–styrene triblock copolymers (SEBS) at three maleinization levels in an attempt to link in these materials high toughness with appropriate small‐strain and fracture tensile properties. OMMT stayed only in the PA6 matrix, and no preferential location in the matrix/rubber interphase was observed. The increased dispersed phase size upon the addition of OMMT was attributed to interactions between maleic anhydride (MA) functionalized SEBS and the surfactant of OMMT. The rubber particle size generally decreased when the MA content of SEBS increased, and this indicated compatibilization. The subsequent good adhesion led to tough nanocomposites across a wide range of both strain rates and fracture modes. As the critical interparticle distance (τc) decreased with the MA content, and the other parameters that could influence the surface‐to‐surface mean interparticle distance did not change, it is proposed that in these PNs higher adhesion leads to a smaller τc value. Finally, the presence in the matrix of a nanostructured clay makes the rubber content necessary for the toughness jump to increase and τc to decrease. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3611–3620, 2005  相似文献   

8.
The effects of clay on polymorphism of polypropylene (PP) in PP/clay nanocomposites (PPCNs) under various thermomechanical conditions were studied. In extruded PP and PPCN pellet samples, only α-phase crystallites existed, as they were prepared by rapidly cooling the melt extrudates to room temperature. Under compression, β-phase crystallites can develop in neat PP under various thermal conditions, of which isothermal crystallizing at 120 °C gave the highest content of β-phase crystallites. In contrast, no β-phase crystallite was detected in the PPCN samples prepared under the same conditions. This indicated that clay significantly inhibits the formation of β-phase crystallites. The likely reason is that the presence of clay in PPCNs greatly sped up the crystallization process of the α phase, whereas it had an insignificant effect on the crystallization rates of the β phase. The results also showed that clay may slightly promote the formation of γ-phase PP crystallites in PPCNs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1810–1816, 2004  相似文献   

9.
Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites   总被引:1,自引:0,他引:1  
The non-isothermal crystallization behaviors of polyamide 6/clay nanocomposite (PA6CN) were investigated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). DSC results showed that the nanometric silicate layers in PA6CN acted as effective nucleation agents. The addition of silicate layers influenced the mechanism of nucleation and the growth of PA6 crystallites. The DSC results also implied an unusual phenomenon, in contrast to PA6, the crystallinity degree of PA6CN increased with increasing cooling rate. XRD results verified this phenomenon and indicated that the addition of silicate layers favored the formation of the γ crystalline form.  相似文献   

10.
A novel clay/waterborne polyurethane (WPU) nanocomposite was synthesized from polyurethane and saponite organoclay. The clay was organically modified with various swelling agents, the effect of which has been investigated. Hydrogen bonding between organic and inorganic materials was characterized with Fourier transform infrared (FTIR) spectroscopy. The results implied that hydrogen bonding increased when organoclay was added. Mechanical and wear property studies revealed that introducing clay into waterborne polyurethane will enhance the Young's modulus (from 56 to 126 MPa), the maximum stress (from 3.9 to 7.6 MPa), and the elongation at break (from 27.7 to 58.7%) of the nanocomposite by a factor of two, whereas the wear loss will be only one third of the neat waterborne polyurethane. Atomic force microscopy (AFM) was used to analyze the surface morphology of the nanocomposite. An AFM microphotograph showed that the surface of the clay/waterborne polyurethane nanocomposite was smoother when clay was added in waterborne polyurethane. The average roughness (Ra) decreased from 1.00 to 0.12. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1–12, 2005  相似文献   

11.
Three nylon-6/unmodified clay/rubber nanocomposites with high toughness, high stiffness, high heat resistance and reduced flammability were studied in this paper, on basis of three compound powders of ultra-fine full-vulcanized powdered rubber (UFPR)/montmorillonite (UFPRM). It was found that all of the three UFPRs used in the study can help the silicate layers without organic treatment to be exfoliated in the nylon-6 matrix, despite some differences in compatibilities between them and nylon-6. Accordingly, the clay in different UFPRMs at the same loading content can lead to a similar improvement in stiffness and heat resistance of nanocomposites. In other words, UFPRs having different compatibilities with nylon-6 do not affect the stiffness and heat resistance of nanocomposites largely. However, the nylon-6 nanocomposites, modified with different UFPRMs, show different superior properties. Butadiene styrene vinyl-pyridine UFPRM (VP-UFPRM) is more effective in improving toughness of nylon-6. Nylon-6/silicone UFPRM (nylon-6/S-UFPRM) nanocomposite exhibits more reduced flammability, good flowability and high thermal stability. As for nylon-6/acrylate UFPRM (nylon-6/A-UFPRM) nanocomposite, it shows high toughness and thermal stability. Furthermore, the mechanism of unmodified clay exfoliation during the melt compounding and the effect of different UFPRs on the properties of the nylon-6/UFPRM nanocomposites are also discussed.  相似文献   

12.
The bisphenol‐A type epoxy resin was combined with layered clays. Three types of epoxy/clay nanocomposites were prepared by different clay pretreatment methods, that is, the slurry (clay swelling with polar solvent), organo, and solubilization (organoclay swelling with polar solvent) methods. The organo and solubilization systems showed good dispersibility. The basal spacing of the layered clays in the obtained nanocomposites was evaluated by XRD and TEM observations. The basal spacing of the nanoclay in the solubilization system drastically increased. The mechanical properties were improved with the increase in the clay dispersion. A high modulus and fracture toughness were obtained by improvement of the clay dispersion into the matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1753–1761, 2009  相似文献   

13.
Synthetic biodegradable aliphatic polyester (BAP) intercalated into organoclay was prepared by melt compounding, and its solidlike characteristics were investigated via several rheological test modes: steady shear rotation, oscillation, and creep testing. Structural investigations with X‐ray diffraction and transmission electron spectroscopy were also performed for a better understanding of the characteristic rheological behaviors. The creep, recovery, and stress modulus exhibited a solidlike transition of BAP/clay nanocomposites that depended on the clay content. An increase in the zero shear rate viscosity and a shifting of the crossover point (storage modulus vs loss modulus) to a lower frequency were also observed with increasing clay contents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2052–2061, 2003  相似文献   

14.
The polyamide‐6 (PA6)/natural clay mineral nanocomposites were successfully prepared by solid‐state shear milling method without any treatment of clay mineral and additives. PA6/clay mixture was pan‐milled to produce PA6/clay compounding powder, using pan‐mill equipment. The obtained powder as master batch was diluted with neat PA6 to prepare composites by a twin‐screw extruder. The clay silicate layers were found to be partially exfoliated and dispersed homogeneously at nanometer level in PA6 matrix. The rheological measurements and mechanical properties of nanocomposites were characterized. The shear viscosities of nanocomposites were higher than that of pure PA6, and tensile strength and tensile modulus increased, but Izod impact strength decreased, with increasing concentration of clay. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 249–255, 2006  相似文献   

15.
Non-isothermal crystallization of MaterBi-Z (starch-polycaprolactone blend) and its nanocomposites with different clay contents (0, 2.5 and 5 mass%) was studied. The experimental data show that clay can be act both as nucleating or retarding agent depend on the clay content. Kinetic parameters obtained by using a non-linear regression method, i.e., Kamal’s model and Dietz’s modification, were able to describe the non-isothermal crystallization behavior of the studied materials. A full model that takes into account the induction and growth of the crystal during cooling under non-isothermal conditions was used to obtain a continuous cooling transformation diagrams.  相似文献   

16.
The nonisothermal cold crystallization behavior of intercalated polylactide (PLA)/clay nanocomposites (PLACNs) was studied using differential scanning calorimetry, polarized optical microscope, X‐ray diffractometer, dynamic mechanical thermal analysis, and Fourier transform infrared spectrometer. The results show that both the cold crystallization temperature (Tcc) and melting point (Tm) of PLA matrix decreases monotonously with increasing of clay loadings, accompanied by the decreasing degree of crystallinity (Xc%) at the low heating rates (≤5 °C/min). However, the Xc% of PLACNs presents a remarkable increase at the high heating rate of 10 °C/min in contrast to that of neat PLA. The crystallization kinetics was then analyzed by the Avrami, Jezioney, Ozawa, Mo, Kissinger and Lauritzen–Hoffman kinetic models. It can be concluded that at the low heating rate, the cold crystallization of both the neat PLA and nanocomposites proceeds by regime III kinetics. The nucleation effect of clay promote the crystallization to some extent, while the impeding effect of clay results in the decrease of crystallization rate with increasing of clay loadings. At the high heating rate of 10 °C/min, crystallization proceeds mainly by regime II kinetics. Thus, the formation of much more incomplete crystals in the PLACNs with high clay loadings due to the dominant multiple nucleations mechanism in regime II, may have primary contribution to the lower crystallization kinetics, also as a result to the higher degree of crystallinity and lower melting point in contrast to that of neat PLA. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1100–1113, 2007  相似文献   

17.
The primary objective of this study was to improve montmorillonite clay‐platelet separation in vinyl ester resin matrix by organically modifying the nanoclay platelet with a partially reactive onium salt. The reactive onium salt (ω‐undecylenyl amine hydrochloride) was synthesized from commercial ω‐undecylenyl alcohol through a series of synthetic conversions. Nonreactive onium salt (undecyl amine hydrochloride) was made from commercial undecyl amine. These salts were characterized with 1H and 13C NMR and Fourier transform infrared techniques. The relative amounts of exfoliated, intercalated, and as‐treated clay and the size of the clay particle aggregates depended significantly on the composition of clay and the processing conditions. When the clay was ion‐exchanged with a mixture of reactive and nonreactive onium salts, a partially exfoliated vinyl ester resin polymer nanocomposite was formulated. The addition of a comonomer styrene and high‐intensity ultrasonic mixing produced vinyl ester nanocomposite with the highest degree of clay‐platelet exfoliation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1310–1321, 2004  相似文献   

18.
The pressure‐volume‐temperature (PVT) dependencies of polyamide‐6 and its nanocomposites (polymeric nanocomposites) were measured at temperatures T = 300–600 K and pressures P = 0.1–190 MPa, thus spanning the range of molten and “solid” phases. The Simha‐Somcynsky (S‐S) cell‐hole equation of state (EOS) was used for describing the molten region. At Tg(P) ≤ TTm(P), the “solid” phase is a mixture of the liquid polyamide‐6 with dispersion of crystals. Accordingly, the PVT behavior in this region was described as a combination of the S‐S EOS for the liquid phase and the Midha‐Nanda‐Simha‐Jain (MNSJ) EOS for the crystalline one. These two theories based on different models yielded two sets of the characteristic reducing parameters, P*, T*, V* and the segmental molecular weight, Ms. Incorporation of 2 and 5 wt % clay increased P* and reduced T* and V*, but the effects were small. Fitting the combination of S‐S and MNSJ EOS' to isobaric “solid” phase data yielded the total crystallinity, Xcryst, and the correcting excess specific volume, ΔVm,c. Both parameters were sensitive to pressure, P, and the clay content, w—the former increased with P and w, whereas the latter decreased. The raw PVT data were numerically differentiated to obtain the thermal expansion and compressibility coefficients, α and κ, respectively. At T < Tm, addition of clay reduced their relative magnitude, whereas at T > Tm, the opposite effect was observed, most likely owing to the excess of intercalant in the polymeric nanocomposites samples. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 966–980, 2009  相似文献   

19.
We have investigated the molecular dynamics of poly(ethylene glycol-co-cycloxeane-1,4-dimethanol terephthalate) (PETG) nanocomposites based on a organically modified layered silicate. Intercalated nanocomposites were prepared by melt compounding technique as evidenced from the X-ray diffraction and transmission electron microscopy studies. Two relaxation processes were observed in pure PETG as well as in the nanocomposites. The low-temperature β-process was assigned to the local motions of CO polar groups and the α-process was due to the glass-rubber transition or the segmental relaxations associated with the polymer chain backbone. Presence of layered silicates accelerated α-relaxation dynamics in the nanocomposites accompanied by a depression in Tg which was attributed to the reduced intermolecular cooperativity between intercalated polymers chains. Additionally, a direct comparison between the viscoelastic and dielectric studies shows excellent agreement between the accelerated α dynamics of the nanocomposites. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2539–2555, 2008  相似文献   

20.
Ethylene‐vinyl alcohol copolymer (EVOH)/clay nanocomposites were prepared via dynamic melt blending. The effect of the processing parameters on blends containing two clay types in different amounts was examined. The blends were characterized with a Brabender plastograph and capillary rheometer, differential scanning calorimetry, dynamic mechanical thermal analysis (DMTA), X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). XRD showed advanced EVOH intercalation within the galleries, whereas TEM images indicated exfoliation, thereby complementing the XRD data. A dilution process with EVOH and clay treatment in an ultrasonic bath before melt blending did not add to the intercalation level. Different trends were observed for the EVOHs containing two different clay treatments, one claimed to be treated for EVOH and the other for amine‐cured epoxy. They reflected the differences in the amounts of the strongly interacting polymer for the two nanocomposites. Thermal analysis showed that the melting temperature, crystallization temperature, and heat of fusion of the EVOH matrix sharply decreased with both increasing clay content and processing times. Significantly higher viscosity levels were obtained for the blends in comparison with those of the neat polymer. The DMTA spectra showed higher glass‐transition temperatures for the nanocomposites in comparison with those of the neat EVOH. However, at high clay loadings, the glass‐transition temperature remained constant, presumably because of an adverse plasticizing effect of the low moleculared mass onium ions treating the clays. The storage modulus improved when clay treated for EVOH was used, and it deteriorated when amine‐cured epoxy clay was incorporated, except for the sonicated clay. TGA results showed significant improvements in the blends' thermal stability in comparison with that of the neat EVOH, which, according to TEM, was greater for the intercalated structures rather than for exfoliated ones. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1741–1753, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号