首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Chiral stationary phases (CSPs) for high-performance liquid chromatographic (HPLC) have been prepared by coating silica gel with cellulose tribenzoate or cellulose trisphenylcarbamate. The effect of chiral additives on preparation of the CSPs was studied with (+)-l-mandelic acid, (−)-2-phenyl-1-propanol, (+)-1-phenyl-1,2-ethanediol and (−)-1-(1-naphthyl)ethanol as chiral additives for cellulose tribenzoate and (−)-2-phenyl-1-propanol and (+)-phenylsuccinic acid as chiral additives for cellulose trisphenylcarbamate. The results showed that chiral recognition by these stationary phases was increased in comparison with the original CSPs, especially the resolution (R S) obtained. The method can be used to improve the efficiency of enantiomer separation by silica gel stationary phases coated with polymers.  相似文献   

2.
The spherical beads consisting of cellulose 3,5-dimethylphenylcarbamate with partial hydroxyl groups were prepared to be used as chiral packing materials (CPMs) for HPLC. The beads were obtained without using macroporous silica gel, which is usually used as the support of the CPMs based on the polysaccharide derivatives. After the crosslinking in the bead with diisocyanates, such as 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-dibenzyl diisocyanate (DBDI), tolylene-2,4-diisocyanate (TDI), and m-xylylene diisocyanate (XDI), the obtained beads were packed into an HPLC column. As the content of the hydroxyl groups of the cellulose derivatives decreased, the obtained CPM exhibited a higher chiral recognition ability. The beads possessed a higher loading capacity than the CPM prepared by coating the cellulose derivative on silica gel. The crosslinked beads could be used with the eluent containing chloroform. The amylose derivative beads were also prepared as a CPM for chiral HPLC.  相似文献   

3.
In 1979, the formation of one‐handed helical poly(triphenylmethyl methacrylate) (PTrMA) was found through the helix‐sense‐selective polymerization of methacrylate using chiral anionic initiators, and the existence of a stable helical polymer without chiral side chains was proved. The chiral polymer exhibited unexpected high chiral recognition of various racemic compounds when used as the chiral packing material (CPM) for HPLC, which was commercialized in 1982 as the first chiral column based on an optically active polymer. This success encouraged us to develop further useful commercial chiral packing materials (CPMs) based on polysaccharides, cellulose, and amylose. By using these polysaccharide‐based CPMs, particularly phenylcarbamate derivatives, nearly 90% of chiral compounds can be resolved not only analytically but also preparatively, and several chiral drugs have been produced using the CPMs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1731–1739, 2009  相似文献   

4.
The 4‐tert‐butylphenylcarbamates of cellulose and amylose bearing a small amount of 3‐(triethoxysilyl)propyl residues were synthesized by a one‐pot process and efficiently immobilized onto a silica gel through intermolecular polycondensation of the triethoxysilyl groups. The obtained chiral packing materials (CPMs) were evaluated by HPLC. The polysaccharide derivatives containing about 1–2% of the 3‐(triethoxysilyl)propyl residue were efficiently immobilized with a high chiral recognition ability. The immobilized CPMs could be used with the eluents containing chloroform and tetrahydrofuran (THF), which cannot be used with the conventional coated‐type CPMs. By using these eluents, the chiral recognition for many racemates was improved.  相似文献   

5.
Cellulose 3,5-dimethylphenylcarbamate was successfully immobilized onto bare silica gel for HPLC through the intermolecular polycondensation of triethoxysilyl groups, which were introduced onto the cellulose derivative via epoxide ring-opening reaction under acidic conditions. The immobilized-type chiral packing material (CPM) exhibited high chiral recognition ability and could be used with various eluents, which are incompatible with the conventional CPMs prepared by coating the derivative onto silica gel.  相似文献   

6.
Stereoregular poly(phenylacetylene) derivatives bearing L ‐leucine ethyl ester pendants, poly‐1 and poly‐2a , were, respectively, synthesized by the polymerization of N‐(4‐ethynylphenylcarbamoyl)‐L ‐leucine ethyl ester ( 1 ) and N‐(4‐ethynylphenyl‐carbonyl)‐L ‐leucine ethyl ester ( 2 ) using Rh(nbd)BPh4 as a catalyst, while stereoirregular poly‐2b was synthesized by solid‐state thermal polymerization of 2 . Their chiral recognition abilities for nine racemates were evaluated as chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC) after coating them on silica gel. Both poly‐1 and poly‐2a with a helical conformation showed their characteristic recognition depending on coating solvents and the linkage groups between poly(phenylacetylene) and L ‐leucine ethyl ester pendants. Poly‐2a with a shorter amide linkage showed higher chiral recognition than poly‐1 with a longer urea linkage. Coating solvents played an important role in the chiral recognition of both poly‐1 and poly‐2a due to the different conformation of the polymer main chains induced by the solvents. A few racemates were effectively resolved on the poly‐2a coated with a MeOH/CHCl3 (3/7, v/v) mixture. The separation factors for these racemates were comparable to those obtained on the very popular CSPs derived from polysaccharide phenylcarbamates. Stereoirregular poly‐2b exhibited much lower chiral recognition than the corresponding stereoregular, helical poly‐2a , suggesting that the regular structure of poly(phenylacetylene) main chains is essential to attain high chiral recognition. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Polysaccharide-immobilized chiral stationary phases (CSPs) were prepared by the polymerization of cellulose 3,5-dimethylphenylcarbamate, having a polymerizable vinyl group, such as 4-vinylphenylcarbamate or 2-methacryloyloxyethylcarbamate, at the 6-position, with a vinyl monomer, such as styrene, isoprene, t-butyl acrylate, or t-butyl methacrylate, on silica gel under various conditions. Their chiral recognition abilities were then evaluated with high-performance liquid chromatography. The immobilized cellulose 3,5-dimethylphenylcarbamate remained on the silica gel even if washed with tetrahydrofuran, which could dissolve the cellulose derivative. The chiral recognition abilities of the immobilized CSPs were similar to those of the coated CSPs when the vinyl monomer content was low. The chiral recognition abilities of the obtained immobilized CSPs slightly depended on the vinyl monomers. The immobilization of the cellulose derivatives was more efficiently attained on the silica gel modified with a vinyl compound. The cellulose derivatives, randomly having a vinyl group at the 2-, 3-, or 6-position of the glucose unit, were prepared by a one-pot reaction. The immobilization efficiency of these derivatives was slightly lower than that of the derivative with the vinyl group at the 6-position. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3703–3712, 2003  相似文献   

8.
Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically immobilizing the polysaccharide and β-cyclodextrin derivatives onto inert silica gel carriers as chromatographic support. Over the past few years, new chiral selectors have been introduced, and progressive methods to prepare CSPs have been exploited. Also, chiral recognition mechanisms, which play a crucial role in the investigation of chiral separations, have been better elucidated. Further insights into the broad functional performance of commercially available chiral column materials and/or the respective newly developed chiral phase materials on enantiomeric separation (ES) have been gained. This review summarizes the recent developments in CSs, CSP preparation, chiral recognition mechanisms, and enantiomeric separation methods, based on polysaccharides and β-cyclodextrins as CSs, with a focus on the years 2019–2020 of this rapidly developing field.  相似文献   

9.
Capillary electrophoresis (CE) using hydroxypropyl-β-cyclodextrin (HP-β-CD) in the separation buffer was investigated to determine the overall chiral purity of a drug containing a single stereogenic center. The effects of primary factors —pH, buffer components, buffer concentration, cyclodextrin concentration and sample amount (concentration and injection volume) — on the resolution of the enantiomers were investigated. Secondary factors such as the HP-β -CD source, lot and degree of substitution that were expected to affect the robustness of the assay were investigated also. The linearity, quantitation limit for the trace enantiomer and the precision of the measurements were determined. This study shows that understanding and optimizing the assay conditions leads to a chiral CE separation that is comparable to that obtained by chiral HPLC. However, chiral CE separations achieved with buffer additives have the advantages of shorter run times, higher numbers of theoretical plates (greater resolution), smaller amounts of chiral additive (less cost) and greater ruggedness (separation virtually independent of column properties unlike HPLC).  相似文献   

10.
手性有机磷化合物液相拆分的研究进展   总被引:7,自引:0,他引:7  
 综述了近年来手性有机磷化合物液相拆分的研究进展。对间接拆分和直接拆分法,特别是各类手性固定相法在拆分有机磷化合物中的应用作了介绍,探讨了相应的拆分机理。85篇。  相似文献   

11.
介绍了β-环糊精的基本性质,综述了β-环糊精及其衍生物作为流动相添加剂在高效液相色谱和高效毛细管电泳手性分离中的应用,并探讨了其作为手性流动相添加剂的特点.指出β-环糊精是良好的手性识别体,不仅可作为色谱手性固定相,还可作为流动相添加剂,用于手性对映体的拆分.  相似文献   

12.
The 3,5-dichlorophenylcarbamates (2) of cellulose bearing a small amount of 3-(triethoxysilyl)propyl residues were synthesized by a one-pot process and immobilized onto a silica gel through intermolecular polycondensation of the triethoxysilyl groups. The obtained cellulose derivatives were characterized by (1) H NMR and elemental analysis (EA), and their recognition abilities were evaluated by high-performance liquid chromatography (HPLC). The cellulose derivatives containing about 1-5% of the 3-(triethoxysilyl)propyl residue were efficiently immobilized with a high chiral recognition ability. The immobilized chiral packing materials (CPMs) could be used with the eluents containing chloroform and tetrahydrofuran (THF), which cannot be used with the conventional coated-type chiral packing materials. By using these eluents, the chiral recognition for many racemates was improved.  相似文献   

13.
The use of acidic mobile phase additives allows the chiral separation of underivatized phenylalanine analogs on a common amylosic column. In addition to decreasing retention and band-broadening arising from non-ideal interactions, acidic additives may also increase selectivity. This appears to be due to the minimization of non-selective binding in the recognition site. Effects of the additives are related to additive pKa and size. Ethanesulfonic acid was typically the most effective additive with trifluoroacetic acid being one of the least effective.  相似文献   

14.
A chiral capillary monolithic column for enantiomer separation in capillary electrochromatography was prepared by coating cellulose tris(3,5‐dimethylphenylcarbamate) on porous glycidyl methacrylate‐co‐ethylene dimethacrylate monolith in capillary format grafted with chains of [2(methacryloyloxy)ethyl] trimethylammonium chloride. The surface modification of the monolith by the photografting of [2(methacryloyloxy)ethyl] trimethylammonium chloride monomer as well as the coating conditions of cellulose tris(3,5‐dimethylphenylcarbamate) onto the grafted monolithic scaffold were optimized to obtain a stable and reproducible chiral stationary phase for capillary electrochromatography. The effect of organic modifier (acetonitrile) in aqueous mobile phase for the enantiomer separation by capillary electrochromatography was also investigated. Several pairs of enantiomers including acidic, neutral, and basic analytes were tested and most of them were partially or completely resolved under aqueous mobile phases. The prepared monolithic chiral stationary phases exhibited a good stability, repeatability, and column‐to‐column reproducibility, with relative standard deviations below 11% in the studied electrochromatographic parameters.  相似文献   

15.
A series of chiral polymers based on poly(N‐acryl) amino acids was synthesized using a convergent synthetic approach. These chiral polymers have been used as chiral additives to induce enantioselective crystallization of racemic or conglomerate amino acids in solutions. These polymeric additives showed strong capabilities to enhance highly enantioselective resolution during the crystallization of amino acids. In addition, these polymers caused unusual modifications of amino acid crystal morphologies. Furthermore, spherical microparticles of those same chiral polymers were also shown active in similar chiral discriminations during amino acid crystallizations occurring on microparticle surfaces. Our study demonstrates the high potential of chiral polymers and microparticles to resolve amino acids throughout crystallization processes. High enantiomeric excesses in one targeted enantiomer of amino acids can also be maximized via time‐dependent kinetic control of crystallizations. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3009–3017, 2006  相似文献   

16.
尹春春  杨田田  张金明  张军 《色谱》2020,38(4):476-483
认识多糖类手性拆分材料的结构性能关系对于构建新型高效手性固定相具有重要指导意义。该文中,以1-烯丙基-3-甲基咪唑氯离子液体为介质,合成了系列不同结构的纤维素苯基氨基甲酸酯,进而考察了取代度、取代基团种类和位置对产物手性拆分性能的影响。结果表明,随着取代度的增加,纤维素苯基氨基甲酸酯对于绝大部分手性分子的拆分效果提高;苯环上取代基团的种类和位置对纤维素苯基氨基甲酸酯手性拆分性能影响显著,弱吸电子基团氯基和给电子基团甲基在合适的位置能显著增强纤维素苯基氨基甲酸酯的手性拆分性能;纤维素3-甲基-4-氯苯基氨基甲酸酯、3,5-二氯苯基氨基甲酸酯和2-甲基-5-氯苯基氨基甲酸酯对一些手性分子的拆分效果优于纤维素3,5-二甲基苯基氨基甲酸酯。  相似文献   

17.
芳氧苯氧丙酸类除草剂在两种手性柱上的对映体分离   总被引:1,自引:0,他引:1  
在自制的涂敷型纤维素三(3,5-二甲基苯基氨基甲酸酯)(CDMPC)手性柱和P irkle型(S,S)-W helk-O 1手性柱上对禾草灵,吡氟禾草灵,喹禾灵,噁唑禾草灵4种芳氧苯氧丙酸类除草剂进行了对映体分离。分别考察了在流动相正己烷中,极性醇类添加剂种类、和浓度以及溶质的结构因素对手性分离的影响,探讨了溶质在两种手性柱上的手性识别的机理。结果显示:噁唑禾草灵在(S,S)-W helk-O 1上获得了较好的分离,其它时3种溶质均在CDMPC上获得了较好的分离,各溶质都达到基线分离。两种手性柱的手性识别机理不同,溶质和固定相的结构是手性识别的关键。  相似文献   

18.
流动相组成对有机硒手性化合物拆分的影响   总被引:2,自引:0,他引:2  
 在自制的涂敷型纤维素 三 (3,5 二甲基苯基氨基甲酸酯 ) (CDMPC)手性固定相上拆分了一些结构相似的有机硒手性化合物 ,详细考察了三元流动相对手性拆分的影响 ,并探讨了溶质分子与手性固定相相互作用的模式。实验结果表明 :在二元流动相中加入极少量的质子性改性剂 (醇 )或非质子性改性剂 (乙腈 ) ,可使溶质的保留和手性拆分发生较大的变化。  相似文献   

19.
萘普生是一种消炎镇痛药 ,其 S对映体的抗炎作用是 R构型的 2 8倍 ,萘普生及其衍生物的拆分具有重要意义 .手性固定相 HPLC直接拆分 [1~ 4 ] 是最简便的分析方法 .氧化锆是近年来备受关注的色谱载体 [5,6 ] .Carr等 [7] 对碱性药物快速拆分表明氧化锆在手性分离Scheme1  Structuresof chiral naproxen and its derivatives中的独特选择性 .萘普生及其衍生物在锆基手性固定相上的分离未见文献报道 .本组利用自制的球形氧化锆制备了涂敷型纤维素 -三 ( 3,5 -二甲基苯基氨基甲酸酯 ) -Zr O2 手性固定相 ( CDMPC- Zr O2 - CSP) ,在正…  相似文献   

20.
A series of novel stereoregular one‐handed helical poly(phenylacetylene) derivatives ( PPA‐1 and PPA‐1a~g ) bearing l ‐phenylglycinol and its phenylcarbamate residues as pendants was synthesized for use as chiral stationary phases (CSPs) for HPLC, and their chiral recognition abilities were evaluated using 13 racemates. The phenylcarbamate residues include an unsubstituted phenyl, three chloro‐substituted phenyls (3‐Cl, 4‐Cl, 3,5‐Cl2), and three methyl‐substituted phenyls (3‐CH3, 4‐CH3, 3,5‐(CH3)2). The acidity of the phenylcarbamate N‐H proton and the hydrogen bonds formed between the N‐H groups of the phenylcarbamate residues were dependent on the type, position, and the number of substituents on the phenylcarbamate residues. The chiral recognition abilities of these polymers significantly depended on the dynamic helical conformation of the main chain with more or less regularly arranged pendants. The chiral recognition abilities seem to be improved by the introduction of substituents on the phenylcarbamate residues, and PPA‐1d bearing the more acidic N‐H groups due to the 3,5‐dichloro substituents, exhibited a higher chiral recognition than the others. PPA‐1d showed an efficient chiral recognition for some racemates, and baseline separation was possible for racemates 5 , 11 , 12 , and 15 . © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 809–821  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号