首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general introduction to foams, the initial stages in the production of foams in aqueous solution, foam structures and the classification of bulk foams according to their lifetimes and stability are presented. Fundamental studies on horizontal and vertical isolated foam lamellae with emphasis on drainage and stability are reviewed. For freshly prepared foams containing fairly thick lamellae, the mechanical-dynamical properties of the surface adsorbed layers (surface tension gradients) are decisive for retaining stability. Important parameters to be taken into consideration are the surface elasticity, viscosity (bulk and surface), gravity drainage and capillary suction. Also the film should exhibit low permeability to gases. Providing the stability of a foam film (containing dilute surfactant) is retained during the initial dynamic drainage process, then eventually a static (equilibrium) situation will be reached at film thicknesses < 100 nm. In this region, interfacial interactions dominate and the stability of the film must be discussed in terms of the intermolecular forces (electrostatic double layer repulsion, dispersion force attraction and steric forces). This may lead to the formation of common black and Newton black films and these structures have been shown to be resilient to rupture and have low gas transfer characteristics. At high surfactant concentrations (>c.m.c.) stabilization of films and foams can occur by a micellar laying mechanism (stratification). Antifoaming and defoaming theories are presented, together with the mechanisms of heterogeneous antifoaming agents (non-polar oil, hydrophobic solid particles or mixtures of both) including recent theories describing the role of the emulsion and pseudo-emulsion film in the stability of foams containing oil droplets. Finally, defoaming by ultrasonic waves is briefly reviewed.  相似文献   

2.
A new class of surfactant mixtures is described, which is particularly suitable for studies related to foam dynamics, such as studies of foam rheology, liquid drainage from foams and foam films, and bubble coarsening and rearrangement. These mixtures contain an anionic surfactant, a zwitterionic surfactant, and fatty acids (e.g., myristic or lauric) of low concentration. Solutions of these surfactant mixtures exhibit Newtonian behavior, and their viscosity could be varied by using glycerol. Most importantly, the dynamic surface properties of these solutions, such as their surface dilatational modulus, strongly depend on the presence and on the chain-length of fatty acid(s). Illustrative results are shown to demonstrate the dependence of solution properties on the composition of the surfactant mixture, and the resulting effects on foam rheological properties, foam film drainage, and bubble Ostwald ripening. The observed high surface modulus in the presence of fatty acids is explained with the formation of a surface condensed phase of fatty acid molecules in the surfactant adsorption layer.  相似文献   

3.
Formation of films possessing a layered or stratified structure has been observed with foam films from liquid crystals, from concentrated surfactant solutions and in liquid layers on the surface of water. The stratifying films have a structure similar to that of the smectic phase which soaps are known to form in the bulk solution at high concentrations. The repeating units of which such films are built are the so-called black films: each unit consists of two surfactant layers interleaved by a thin aqueous core. In the study presented here we have observed that stratification can also take place in emulsion films from concentrated aqueous surfactant solutions. We have compared these results with those obtained for foam films using the same surfactant, i.e. sodium dodecylsulfate.  相似文献   

4.
The foaming properties of. surfactant-oil-water systems are found to be closely related to the phase behavior at equilibrium. In Winsor I systems both the surfactant-oil-water emulsion and its aqueous phase produce stable foams. The foaminess and the foam stability follow the same pattern of variation than the emulsion stability. In Winsor III (three phase microemulsion-oil-water) and Winsor II systems no foam can be formed. The changes are the same no matter the formulation variable used to scan the physico-chemical formulation or the method used to measure the foam stability.  相似文献   

5.
Dairy foams were manufactured on a pilot plant with various sucrose ester contents. Oil-in-water emulsions were produced by high-pressure homogenisation of anhydrous milk fat (20 wt%) with an aqueous phase containing skim milk powder (6.5 wt%), sucrose (15 wt%), hydrocolloids (2 wt%), and sucrose esters. Sucrose ester content was varied from 0 to 0.35 wt%. Firmness and stability of dairy foams were determined. The fraction of protein associated with emulsion fat droplets and the compression isotherms of those droplets were determined as a function of sucrose ester content. With less than 0.1 wt% sucrose ester, no foam could be produced. The most firm and stable foams were obtained with ca. 0.1 wt% sucrose ester. The fraction of protein associated with emulsion droplets suddenly falls from 60% at a sucrose ester content lower than 0.1125% down to ca. 10-20% for higher surfactant content. Compression isotherms of emulsion droplets at the air-water interface show that, in the presence of surfactant, emulsion droplets disrupt and spread at the interface whilst without surfactant they become dispersed. This means that the presence of sucrose ester causes some destabilisation of fat droplet interfacial layers. There is hence an optimal sucrose ester content that allows some destabilisation of the oil-water interface without concomitant protein displacement from that interface. Consequently, with the recipe and manufacturing process used to produce dairy foams, there exists a compromise in sucrose ester content with regards to manufacture and shelf-life of dairy foams.  相似文献   

6.
We describe results from systematic measurements of the rate of bubble Ostwald ripening in foams with air volume fraction of 90%. Several surfactant systems, with high and low surface modulus, were used to clarify the effect of the surfactant adsorption layer on the gas permeability across the foam films. In one series of experiments, glycerol was added to the foaming solutions to clarify how changes in the composition of the aqueous phase affect the rate of bubble coarsening. The experimental results are interpreted by a new theoretical model, which allowed us to determine the overall gas permeability of the foam films in the systems studied, and to decompose the film permeability into contributions coming from the surfactant adsorption layers and from the aqueous core of the films. For verification of the theoretical model, the gas permeability determined from the experiments with bulk foams are compared with values, determined in an independent set of measurements with the diminishing bubble method (single bubble attached at large air-water interface) and reasonably good agreement between the results obtained by the two methods is found. The analysis of the experimental data showed that the rate of bubble Ostwald ripening in the studied foams depends on (1) type of used surfactant-surfactants with high surface modulus lead to much slower rate of Ostwald ripening, which is explained by the reduced gas permeability of the adsorption layers in these systems; (2) presence of glycerol which reduces the gas solubility and diffusivity in the aqueous core of the foam film (without affecting the permeability of the adsorption layers), thus also leading to slower Ostwald ripening. Direct measurements showed that the foam films in the studied systems had very similar thicknesses, thus ruling out the possible explanation that the observed differences in the Ostwald ripening are due to different film thicknesses. Experiments with the Langmuir trough were used to demonstrate that the possible differences in the surface tensions of the shrinking and expanding bubbles in a given foam are too small to strongly affect the rate of Ostwald ripening in the specific systems studied here, despite the fact that some of the surfactant solutions have rather high surface modulus. The main reason for the latter observation is that the rate of surface deformation of the coarsening bubbles is extremely low, on the order of 10(-4) s(-1), so that the relaxation of the surface tension (though also slow for the high surface modulus systems) is still able to reduce the surface tension variations down to several mN/m. Thus, we conclude that the main reason for the reduced rate of bubble Ostwald ripening in the systems with high surface modulus is the low solubility and diffusivity of the gas molecules in the respective condensed adsorption layers (which have solid rather than fluid molecular packing).  相似文献   

7.
The aim of the present study is to clarify how the surfactant adsorption layer properties are related to the course of the drainage parameters of microscopic foam films in the special case of aqueous solutions of the non-ionic amphiphile tetraethyleneglycol monododecyl ether (C12E4), containing premicellar nanostructures. The scope of the research covers adsorption dynamics, construction of equilibrium adsorption isotherms, studies on surface rheology of the interfacial layers and microscopic foam film drainage kinetics. It is established that in the premicellar concentration domain considerable irregularities of the adsorption layer properties are observed: two plateau regions are registered in the experimental surface tension isotherm along with unusual changes of the surface rheological characteristics. The systematic investigation of the drainage of microscopic foam films obtained from these solutions show that the dependencies of basic kinetic parameters of the films on the amphiphile concentration run in synchrony with the changes in the adsorption layer properties. This fact is related to the presence of smaller surfactant aggregates (premicelles). They are presumed to be organized as Platonic bodies. The premicelles play also a significant role in the kinetic stability of the films. The importance of this research is in providing better insight into the initial stages of self-assembling phenomena and into the factors determining the adsorption layer properties and the drainage behaviour of thin liquid films.  相似文献   

8.
The foamability of the aqueous solutions of functionalized, surface-chemically pure surfactants of the nonionic saccharide-type: N,N-di-n-alkylaldonamides, N-alkyl-N-(2-hydroxyethyl)aldonamides, and N-cycloalkylaldonamides, derivatives of D-glucono-1,5-lactone and/or D-glucoheptono-1,4-lactone, were investigated. The approach of Lunkenheimer and Ma?ysa for the characterization of the foamability and foam stability of these surfactant solutions was applied for these investigations. Using standard parameters related to the different physical stages of the foaming process, foam stability can be described in a simple and easy manner. In general, the investigated alkylaldonamides form foams of medium stability. However, for some homologues a transition from unstable to stable foam systems is observed with increasing concentration. Modifications of the molecular structure of the alkylaldonamides are distinctly reflected in their foam properties. This fact concerns not only changes of the hydrophobic moiety and its functionalization but also slight variations of the saccharide residue. Each homologous series reveals an exceptional foam behavior. In the case of the N,N-di-n-alkylaldonamides the increase of the n-alkyl chain length is accompanied by an increase of the foam stability. The aqueous solutions of the N-alkyl-N-(2-hydroxyethyl)aldonamides reveal most favorable foaming properties for homologues with average alkyl chain lengths. Moreover, it was found that the occurrence of a phase transition in the adsorption layers of the N-cyclooctylgluconamides previously observed by surface tension and surface potential measurements is also remarkably reflected in their foam stability.  相似文献   

9.
The stability of foams formed with the protein β-lactoglobulin as a function of increasing concentration of the lipid analogue -α-lysophosphatidylcholine were investigated using a microconductivity technique. The drainage, surface diffusion and thickness properties of thin liquid films (foam lamallae) were also studied using optical microscopy including epi-illumination, fluorescence recovery after photobleaching and film interferometry techniques. In addition, the surfactant binding properties of the protein were examined. The addition of small quantities of -α-lysophosphatidylcholine to β-lactoglobulin (molar ratio, R < 7:1) increased the foam stability, whereas a slightly higher concentration of surfactant in the mixture (R = 10) caused foam destabilisation. The explanation of these observations is based on changes in the composition and structure of the adsorbed interfacial layers of the thin films caused by competitive displacement of the protein by the surfactant.  相似文献   

10.
Some recent trends in foam research have been directed towards the rapid production of highly monodisperse bubbles, of diameter on a scale around or below 100 μm, with surprising consequences. Such foams remain wet under gravity and order spontaneously and rapidly, forming substantial microcrystals. Previously, ordered foams have resulted only from slow processes of deliberate fabrication, or from the influence of walls in confined geometry. This opens up a wide range of new topics of interest, analogous to those of metallurgy: equilibrium crystal phases, their stability, their defects and interfaces, and phase transitions between them. The ordered structures associated with confined geometries also offer opportunities for microfluidics. Other new kinds of foam incorporate particulate matter, and are intermediate between foam and granular matter. Remarkable properties are beginning to emerge for these as well, including “superstability”, that is, a high degree of stability with respect to both coarsening and rupture.  相似文献   

11.
A summary of recent theoretical work on the decay of foams is presented. In a series of papers, we have proposed models for the drainage, coalescence and collapse of foams with time. Each of our papers dealt with a different aspect of foam decay and involved several assumptions. The fundamental equations, the assumptions involved and the results obtained are discussed in detail and presented within a unified framework.Film drainage is modeled using the Reynolds equation for flow between parallel circular disks and film rupture is assumed to occur when the film thickness falls below a certain critical thickness which corresponds to the maximum disjoining pressure. Fluid flow in the Plateau border channels is modeled using a Hagen-Poiseuille type flow in ducts with triangular cross-section.The foam is assumed to be composed of pentagonal dodecahedral bubbles and global conservation equations for the liquid, the gas and the surfactant are solved to obtain information about the state of the decaying foam as a function of time. Homogeneous foams produced by mixing and foams produced by bubbling (pneumatic foams) are considered. It is shown that a draining foam eventually arrives at a mechanical equilibrium when the opposing forces due to gravity and the Plateau-border suction gradient balance each other. The properties of the foam in this equilibrium state can be predicted from the surfactant and salt concentration in the foaming solution, the density of the liquid and the bubble radius.For homogeneous foams, it is possible to have conditions under which there is no drainage of liquid from the foam. There are three possible scenarios at equilibrium: separation of a single phase (separation of the continuous phase liquid by drainage or separation of the dispersed phase gas via collapse), separation of both phases (drainage and collapse occurs) or no phase separation (neither drainage nor collapse occurs). It is shown that the phase behavior depends on a single dimensionless group which is a measure of the relative magnitudes of the gravitational and capillary forces. A generalized phase diagram is presented which can be used to determine the phase behavior.For pneumatic foams, the effects of various system parameters such as the superficial gas velocity, the bubble size and the surfactant and salt concentrations on the rate of foam collapse and the evolution of liquid fraction profile are discussed. The steady state height attained by pneumatic foams when collapse occurs during generation is also evaluated.Bubble coalescence is assumed to occur due to the non-uniformity in the sizes of the films which constitute the faces of the polyhedral bubbles. This leads to a non-uniformity of film-drainage rates and hence of film thicknesses within any volume element in the foam. Smaller films drain faster and rupture earlier, causing the bubbles containing them to coalesce. This leads to a bubble size distribution in the foam, with the bubbles being larger in regions where greater coalescence has occurred.The formation of very stable Newton black films at high salt and surfactant concentrations is also explained.  相似文献   

12.
Foams stabilized by nonionic surfactants are usually moderately stable due to high drainage rate and intense bubble coalescence and coarsening. This study aimed to investigate comparatively the foam properties of aliphatic alcohols (methyl isobutyl carbinol (MIBC) and 2-octanol) and polypropylene glycol (PPG400). Experiments were conducted using the FoamScan method at various surfactant concentrations and gas flow rates where the foam volume, liquid content of foam and foam half-life were determined. The results showed that both foamability and foam stability of surfactant solution increased with increasing gas flow rate and surfactant concentration for all tested surfactants. PPG400 was an unusually strong surfactant having the largest surface activity compared with MIBC and 2-octanol, which exhibited the maximum foaming performance and foam stability at all tested gas flow rates and concentrations. The present study suggested that foam properties depended primarily on the type of surfactant and its concentration and secondarily on the gas flow rate. In addition, properties of interface are closely related to that of foam, which is a significant point if one wants to produce foams for specific applications.  相似文献   

13.
The binding of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to a negatively charged natural polysaccharide (pectin) at air-solution interfaces was investigated on single interfaces and in foams, versus the linear charge densities of the polysaccharide. Besides classical methods to investigate polymer/surfactant systems, we applied, for the first time concerning these systems, the analogy between the small angle neutron scattering by foams and the neutron reflectivity of films to measure in situ film thicknesses of foams. CTAB/pectin foam films are much thicker than the pure surfactant foam film but similar for high- and low-charged pectin/CTAB systems despite the difference in structure of complexes at interfaces. The improvement of the foam properties of CTAB bound to pectin is shown to be directly related to the formation of pectin-CTAB complexes at the air-water interface. However, in opposition to surface activity, there is no specific behavior for the highly charged pectin: foam properties depend mainly upon the bulk charge concentration, while the interfacial behavior is mainly governed by the charge density of pectin. For the highly charged pectin, specific cooperative effects between neighboring charged sites along the chain are thought to be involved in the higher surface activity of pectin/CTAB complexes. A more general behavior can be obtained at lower charge density either by using a low-charged pectin or by neutralizing the highly charged pectin in decreasing pH.  相似文献   

14.
15.
The drainage and stability of DMPG (l-α-phosphatidyl-dl-glycerol dimyristoyl) foams were studied by a microconductivity method under conditions where three different foam film types could be formed—thin foam films (TFF), common black foam films (CBF), and Newton black foam films (NBF). Foaming properties were investigated at 20 and 28°C where DMPG is in the gel and liquid-crystalline states. Higher conductivity signals were observed at the higher temperature where DMPG was in the liquid-crystalline state, which is indicative of wetter or more stable foams under these conditions. This effect was observed independent of foam film type. However, for a given phase state, the type of foam films formed significantly influenced the stability and rate of drainage of the foam. Indeed, the water content of the foams, obtained under conditions for formation of different foam films, is ranked in the order TFF > CBF > NBF. When the temperature was increased to 28°C (i.e., in the liquid-crystalline state), CBF and NBF showed a slight decrease in film thickness and an increase in film lifetime and surface molecular diffusion coefficient in the adsorbed layer. It is likely that the fluidity of the interfacial layer is an important factor contributing to DMPG foam stabilization.  相似文献   

16.
We report evidence for photocontrolled stability and breakage of aqueous foams made from solutions of a cationic azobenzene-containing surfactant over a wide range of concentrations. Exposure to UV or visible lights results in shape and polarity switches in the surfactant molecule, which in turn affects several properties including critical micelle concentration, equilibrium surface tension, and the air-water interfacial composition (cis isomers are displaced by trans ones). We demonstrate that the trans isomer stabilizes foams, whereas the cis isomer forms unstable foams, a property that does not correlate with effects of light on surface tension, nor with total surfactant concentration. Achieving in situ breakage of foam is accordingly ascribed to the remote control of the dynamics of adsorption/desorption of the surfactant, accompanied by gradients of concentrations out of equilibrium. Photomodulation of adsorption kinetics and/or diffusion dynamics on interfaces is reached here by a noninvasive clean trigger, bringing a new tool for the study of foams.  相似文献   

17.
The mixed adsorption of a cationic gemini surfactant, ethanediyl-1,2-bis(dodecyldimethylammonium bromide) (abbreviated as 12-2-12), and an anionic conventional surfactant, sodium dodecyl sulfate (SDS), was examined using surface tension measurements. The viscoelastic properties of the mixed films were investigated by dilational interfacial rheology technique. The results showed that the addition of SDS promoted the close packing of adsorbed molecules at the interface, which increased the dilational elasticity of the mixed films. The stability of the foams was determined by the half-life of foam height collapse. The foams generated by 12-2-12/SDS mixtures were more stable than that formed by pure 12-2-12. In the presence of sodium bromide, the foam stability was further enhanced and the surfactant concentration required to attain the maximum effect in stabilizing foams was greatly reduced. The high foam stability could well relate to the high elasticity of the film.  相似文献   

18.
Foams produced from surfactant solutions containing micelles of the anionic surfactant sodium polyoxyethylene-2 sulfate and counterions of different valence (aluminium, calcium or sodium) are investigated. For this purpose an experimental setup consisting of a glass column and units for detection of pressure, flow and frequency is constructed. Blowing gas bubbles in the surfactant solution at a constant gas pressure produces the foam. Simultaneous monitoring of the bubble volume and frequency relates the foam growth rate to the dynamic surface tension of the surfactant solution. The foam growth rate plotted versus the gas flow rate exhibits a break point at about 80 mL/min, attributed to the transition from regime of bubbles (at lower flow rates - monodisperse foam) to jet regime (at higher flow rates - polydisperse foam). Due to the high surfactant concentration, the foam is stable and its height is linearly increasing with the time. Two types of experiments are carried out. (i) At a constant counterion concentration and variable surfactant concentration, the rate of foam growth increases initially with increasing of the surfactant concentration reaching a plateau at higher concentrations. The foams of pure surfactant grow always slower than the foams with added aluminium ions. (ii) At a constant surfactant concentration and variable counterion concentration, the rate of foam growth exhibits a maximum. It corresponds to number of aggregated surfactant monomers nearly equal to the number of charges provided by the counterions, for example when one aluminium ion binds three surfactant monomers in a micelle. The point of maximum coincides with the transition from small spherical micelles to large cylindrical ones. This transition affects also the micelle lifetime, which is related to the ability of releasing monomers by a micelle in order to supply the bubble surface with surfactant. In support to this hypothesis, the maximum foam growth is found corresponding to lower dynamic surface tension allowing the generation of a large number smaller in size bubbles. The results for the foam growth agree in some extent with the data from independent measurements on the liquid drainage from wet foams.  相似文献   

19.
Porous sulfated zirconia foams were manufactured by a simple methodology based on the sol–gel process combined with a liquid foam template that used a surfactant mixture. A block copolymer (Pluronic F-127) and an anionic surfactant [sodium dodecylsulfate (SDS)] were mixed in different proportions in order to optimize the porous and surface properties of the ceramic material. By adjusting the SDS/Pluronic ratio, it was possible to obtain sulfated zirconia with a combination of macropores and mesopores that provided high porosity (≈90 %) and surface area (≈80 m2 g?1). The sulfate groups linked to the zirconia surface stabilized the tetragonal phase, to the detriment of the thermodynamically stable monoclinic phase. The sulfate groups and the tetragonal phase decreased as a function of the amount of SDS in the liquid foam template. The combined porous and structural characteristics, together with surface acidity, provided enhanced catalytic activity when the sulfated zirconia foams were employed in the isopropanol dehydration reaction. A further benefit was the selectivity towards propene and negligible formation of acetone.  相似文献   

20.
This review deals with the preparation, stability, rheology and different applications of highly concentrated emulsions. These emulsions, which are known as high internal phase ratio emulsions (HIPRE), gel-emulsions, biliquid foams, etc., containing over 90% internal phase by volume, have a swollen micellar (L1 or L2) solution of nonionic or ionic surfactants as a continuous phase. These emulsions have the structure of biliquid foams and behave as gels since they present viscoelastic and plastic properties. The functional macroscopic properties of gel-emulsions are dependent on the structural parameters of the microemulsion continuous phase as well as of the interfacial properties (interfacial tension, bending modules, spontaneous curvature) of surfactant monolayers. The depletion interaction between emulsion droplets due to the non-compensated osmotic pressure of micelles is revealed as a main factor, along with surface forces, which determine the aggregative stability and the rheological properties of these emulsions. The effect of electrolyte and surfactant concentration, temperature, as well as other physicochemical parameters on the fiocculation threshold, stability, and yielding properties of highly concentrated emulsions is explained by the effect of these parameters on the critical micelle concentration (CMC) and the aggregation number of surfactants, and, consequently, on the depletion interaction. The thermodynamic theory of adhesion of fluid droplets in micellar solution and the suggested model of elasticity of gel-emulsions permit to explain the effect of mentioned physicochemical parameters on the elasticity modulus, the plastic strength and the linear deformation of these emulsions. A novel mechanism for the spontaneous formation of gel-emulsions by the phase inversion temperature (PIT) route is suggested, allows the selection of ternary systems able to yield these emulsions, and explains how the droplet size can be controlled during the PIT process. An original model for liquid film rupture is also suggested, and allows the prediction of the effect of structural parameters of micellar solutions and the interfacial properties of surfactant monolayers on the stability of gel-emulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号