首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we present nanowear studies using surface force microscopy (SFM), on nanoscopic thin films of reversibly switchable binary polymer brushes [polystyrene (PS) + poly(2-vinylpyridine) (P2VP)] and respective monobrushes [polystyrene and poly(2-vinylpyridine)] synthesized via “grafting to” method. The aim was to tune the wear in nanothin polymer brush surfaces. Therefore, the effect of conformational switching of PS + P2VP brush on treatment with selective solvents for PS and P2VP chains on the wear process was investigated. Wear process on thick spin-coated films of PS and P2VP was also investigated for comparison. Nanowear experiments were performed using SFM tip by repeating scans over the surface to follow the wear process closely. The wear process on different surfaces was explained on the basis of molecular entanglement as well as adhesion and friction on the sample surface. For spin-coated PS film as well as PS and PS + P2VP brush surfaces (treated with toluene) with molecular entanglements at surface, wear mechanism involved formation of ripples. However, in case of spin-coated P2VP films as well as P2VP and PS + P2VP brush surfaces (treated with ethanol) with no molecular entanglements at surface, wear occurred via removal of polymer chains and their accumulation at the rim. For PS + P2VP surface treated with acidic water, wear mechanism was complex and inhomogeneous ripple formation was followed by formation of heaps of polymeric material in the center of scanned area. The extent of wear as measured either by root mean square roughness of the surface or spacing between the ripples, increased with the number of scans for all the surfaces. Our study shows that wear mode of polymer brush surfaces is different for different polymers and can be controlled/tuned by the use of binary polymer brushes.  相似文献   

2.
Abstract

The synthesis, characterization, and development of new nanoparticle materials have both scientific and technological significance. Surface initiated polymerization (SIP) from nanoparticle surfaces involves the growth of end‐tethered polymer brushes where the length or thickness can be more than twice the radius of gyration (Rg) compared to a free polymer in solution. Different mechanisms are possible on a variety of initiators, reaction conditions, monomers, and nanoparticles. Important differences to solution and bulk polymerization can be observed where the nanoparticles with grafted initiators behave as macroinitiators. In turn, the development of these materials will allow the preparation of thermodynamically and kinetically stable nanocomposites and colloids. Through the careful use of surface sensitive spectroscopic and microscopic techniques, much has been gained from the direct and in‐situ analysis of grafted polymers on the nanoparticles with regards to the kinetics and mechanism of the polymerization process. Parallels can be drawn to SIP on flat surfaces where surface sensitive spectroscopic and microscopic measurements are complementary to analysis methods for colloidal particles. Thus, this review surveys the different polymerization mechanisms and procedures towards forming core‐shell types of hybrid inorganic–organic polymer nanoscale materials.  相似文献   

3.
A universal and straightforward method for the preparation of polymer brushes via the formation of Si-C bond on silicon substrates through the UV-induced photopolymerization is demonstrated.  相似文献   

4.
Polyzwitterionic brushes: Extreme lubrication by design   总被引:1,自引:0,他引:1  
Polymers offer the advantage that they may independently combine desirable supramolecular structure with useful local monomeric properties to yield optimal performance of different tasks. Here we utilise the remarkable lubricating properties both of dense polymer brushes, and of hydration sheaths about charges via the emerging paradigm of hydration lubrication, to design a grafted-from polyzwitterionic brush system, where each of the monomers has a structure similar to the highly-hydrated phosphorylcholine headgroups of phosphatidylcholine lipids. Such polyzwitterions are grown from a macroinitiator coating the substrate (mica) surface using atom transfer radical polymerisation (ATRP) of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) to form exceptionally robust poly(MPC) brushes. We have characterized these brush layers via X-ray reflectometry, X-ray photoelectron spectroscopy, surface forces measurements and atomic force microscopy. Such brushes, designed to optimise their lubrication properties, are indeed found to provide state of the art boundary lubrication, achieving friction coefficients as low as 0.0004 at pressures up to 75 atmospheres over a wide range of sliding velocities. Such low friction is comparable with that of articular cartilage in healthy mammalian joints, which represents nature’s benchmark for boundary lubrication in living organisms, and suggests that hydration lubrication plays a major role in reducing friction in biological systems.  相似文献   

5.
Herein, we report the development of extremely sensitive sandwich assay of kanamycin using a combination of anti-kanamycin functionalized hybrid magnetic (Fe3O4) nanoparticles (MNPs) and 2-mercaptobenzothiazole labeled Au-core@Ag-shell nanoparticles as the recognition and surface-enhanced Raman scattering (SERS) substrate, respectively. The hybrid MNPs were first prepared via surface-mediated RAFT polymerization of N-acryloyl-l-glutamic acid in the presence of 2-(butylsulfanylcarbonylthiolsulfanyl) propionic acid-modified MNPs as a RAFT agent and then biofunctionalized with anti-kanamycin, which are both specific for kanamycin and can be collected via a simple magnet. After separating kanamycin from the sample matrix, they were sandwiched with the SERS substrate. According to our experimental results, the limit of detection (LOD) was determined to be 2 pg mL−1, this value being about 3–7 times more than sensitive than the LOD of previously reported results, which can be explained by the higher SERS activity of silver coated gold nanoparticles. The analysis time took less than 10 min, including washing and optical detection steps. Furthermore, the sandwich assay was evaluated for investigating the kanamycin specificity on neomycin, gentamycin and streptomycin and detecting kanamycin in artificially contaminated milk.  相似文献   

6.
    
We reported on the direct creation of polymer brushes on two-dimensional molybdenum disulfide via the formation of C-S bond by UV-induced photopolymerization. The functionalization can be manipulated in forming polymer grafts on one side or both sides of the nanosheets.  相似文献   

7.
    
The poly(dimethylamino methacrylate) (PDMAEMA) brush‐modified indium tin oxide (ITO) electrode was used to test the switch properties of interfacial activity caused by bioelectrochemical signals. The swelling of the polymer brushes increased when the medium’s pH changed from alkaline to acid after glucose was added to the system. A pH change generated in situ by means of biocatalytic reactions enabled bioelectrocatalytic interface’s reversible activation.  相似文献   

8.
Implicit solvent Brownian dynamics simulations of the structure and tribology of opposing polymer-brush covered surfaces have been carried out as a function of surface separation and solvent quality. Consistent with experiment, shear forces were found to be greater under theta solvent conditions than in a good solvent at equal relative separations (normalized by the respective height of the brushes in theta and good solvents). Much higher relative compression is required before the onset of significant shear forces in good solvent compared to theta solvent. The dependence of shear force for a given relative separation on solvent quality can be accounted for by differences in interpenetration of the brushes. When compared as a function of absolute surface separation, greater interpenetration and greater shear force are observed at large separations for the brushes in good solvent than in theta solvent, consistent with the greater brush height in good solvent. At shorter separations, corresponding to moderate to high compression, brush-brush interactions result in significant deformation of the brushes. In this regime, greater interpenetration and greater shear forces are observed in theta solvent at a given separation, in qualitative agreement with experiment.  相似文献   

9.
    
Molecular dynamic simulations are reported for system of semi-flexible linear rod-like molecules. The molecules are composed of Nc tangent soft spheres, connected by elastic springs. Rigidity is introduced by additional springs between all pairs of spheres along the molecule. The formation of only a nematic LC phase is shown for all systems with Nc = 8 and different flexibility. The effect of flexibility on the order parameter and the volume fraction at the LC phase transition is compared with theoretical predictions by Khokhlov-Semenov and with available simulation data. The dependence of the anisotropy of diffusion on chain flexibility in LC phase was studied. The polymer brushes consisting of flexible and semi-flexible (composed of linear rod-like segments) chains were simulated at different grafting densities. Height of brush, order parameter, distribution of density and chain ends in brush were obtained in both cases and compared with theoretical predictions.  相似文献   

10.
润滑对维持生物体的日常活动和机械设备的正常工作有着十分重要的意义。聚合物刷因其优异的润滑性、良好的可控性和刺激响应性而受到极大关注。研究人员从结构仿生出发,利用高分子的结构可设计性制备出多种拓扑结构的聚合物刷,实现了线性聚合物刷结构和功能的优化。本文介绍了聚合物刷的润滑机理及其研究进展,并比较了几种不同拓扑结构的聚合物刷的润滑效果,包括线形、环状、瓶刷状和颗粒状的聚合物刷,最后对聚合物刷润滑剂的应用前景进行了展望。  相似文献   

11.
A new approach to the three dimensional integration of short DNA strands at gold electrode surfaces via the in situ formation of DNA-acrylamide conjugates is presented. Surface initiated atom transfer radical polymerisation was employed to grow acrylamide brushes co-polymerised in the presence of acrylamide modified DNA probes. This strategy was demonstrated for the realisation of biofunctionalised thin polymer films capable of binding its complementary 105-base DNA amplicon. The synthesised brushes were characterised using atomic force microscopy, attenuated total reflectance spectroscopy and electrochemical impedance spectroscopy. Once characterised, the polymer brushes were applied to the quantitative detection of target DNA using an enzyme labelled reporter DNA probe in a sandwich-type format.  相似文献   

12.
本文综述了刺激响应型聚合物刷的研究进展,阐述了刺激响应型聚合物刷的分类、与基体表面的连接方式以及常规制备方法,介绍了离子强度、温度、pH值、光、溶剂等刺激响应型聚合物刷及其研究现状,并对相应的刺激响应机理进行了探讨。此外,本文还综述了多重刺激响应型聚合物刷的制备设计思路及其刺激响应特性,概述了聚合物刷在响应外界刺激后对基体的弯曲作用以及利用该作用进行可控三维自组装,并对刺激响应型聚合物刷的应用前景进行了展望。  相似文献   

13.
         下载免费PDF全文
Polymer electrolytes a re essential for next-gene ration lithium batteries because of their excellent safety record.However,low ionic conductivity is the main obstacle restricting their commercial application.Composites with nanoparticles are a promising route to overcome this obstacle.In this work,lithium polystyrene sulfonate brushes(LiPSS)is anchored to silicon dioxide nanoparticles with chemical bonding using atom transfer radial polymerization(SI-ATRP).The composite polymer electrolytes are made by mixing vinylene carbonate and nanoparticles via a facile in situ polymerization process.The ionic conductivity of composite polymer electrolytes is improved to 7.2×10^-4 S/cm at room temperature,which is attributed to the low degree of crystallinity of polymer electrolyte and the fast ion transport on the surfaces of polymer brush layers that act as a conductive network.The composite polymer electrolytes show a wide electrochemical window of approximately 4.5 V vs.Li^+/Li and excellent cycling performance retention of approximately 95%after 100 cycles at ambient temperature.The results also prove that surface groups of ceramic na noparticles are an important way to increase the electrochemical properties of composite polymer electrolytes.  相似文献   

14.
A polymer microfluidic chip accomplishing automated sample flow and replacement without external controls and an application of the chip for bioanalytical reaction were described. All the fluidic operations in the chip were achieved by only natural capillary flow in a time-planned sequence. For the control of the capillary flow, the geometry of the channels and chambers in the chip was designed based on theoretical considerations and numerical simulations. The microfluidic chip was made by using polymer replication techniques, which were suitable for fast and cheap fabrication. The test for a biochemical analysis, employing an enzyme (HRP)-catalyzed precipitation reaction, exhibited a good performance using the developed chip. The presented microfluidic method would be applicable to biochemical lab-on-a-chips with integrated fluid replacement steps, such as affinity elution and solution exchange during biosensor signaling.  相似文献   

15.
魏强兵  蔡美荣  周峰 《高分子学报》2012,(10):1102-1107
动物关节的超低摩擦系数和长耐磨寿命主要归功于关节软骨表层以及关节滑液中呈刷型结构的生物大分子.人工仿制的表面接枝聚合物刷可以对关节润滑进行功能模拟,本文简要综述了近年来表面接枝聚合物刷的水润滑研究进展.重点讨论了不同类型聚合物刷 (天然生物大分子、聚电解质刷、两性离子聚合物刷和中性聚合物刷等) 的水润滑机理,最后讨论了目前仿生水润滑研究存在的问题以及未来的发展趋势及应用前景.  相似文献   

16.
孙喆  宋海华 《物理化学学报》2008,24(8):1487-1492
建立了用于模拟双峰聚合物分子刷相结构的自洽场理论. 模拟结果表明, 良溶剂条件能够促使双峰聚合物分子刷裂分为内外两个亚分子层, 其中短链居于内分子层, 而长链伸展到外分子层. 体系溶解性的加强不仅使聚合物的密度分布逐渐趋近强分凝理论的解析结果, 而且加大了分子链的伸展和链段的局部取向程度. 分子链接枝密度的增加能够促使分子刷的层化, 并且在良溶剂区域, 不同接枝密度的分子链密度分布可以回归到同一条主线. 在良溶剂条件下, 长链的聚合度对短链的密度分布影响不大, 但能够导致长链向外分子层扩展.  相似文献   

17.
    
This articles studied and determined the viscosities of the binary mixtures of water–methanol, water–ethanol, water–propanol, water–acetone, acetone–ethanol, methanol–ethanol, and acetone–hexane and the ternary mixtures of water–methanol–ethanol and water–ethanol–acetone at 20°C. It is shown that the mixing of water with the alcohols and acetone resulted in a positive deviation of viscosity, which reached the maximum value at the water mole fraction x 1 ~ 0.7 for water–methanol, x 1 ~ 0.72 for water–ethanol, x 1 ~ 0.74 for water–propanol, and x 1 ~ 0.83 for water–acetone binary mixture. This viscosity deviation can be mainly attributed to the formation of micelles of alcohol or acetone molecules in water because of the hydrophobic attraction between the hydrocarbon chains. The micelle surfaces are surrounded by hydration layers, leading to the positive viscosity deviation in the liquid mixtures because the water in hydration layers has a much higher viscosity than bulk water. Also, the contrary observation was found in the binary mixtures of acetone–ethanol and acetone–hexane, having a negative viscosity deviation.  相似文献   

18.
Certain water soluble polymers may have a repulsive two-body interaction, but an attractiven-body interaction induced by certain clustering effects. In the bulk this may lead to a point in the phase diagram. Here, with polymer brushes, we construct the theoretical density profiles, using a local mean-field approximation. The brush often shows two layers (one dense near the wall, and one dilute), but the concentrations in both layers depend on the distance to the wall. The location of the interlayer boundary can be derived from a Maxwell construction.  相似文献   

19.
    
This contribution reports the immobilization of polyoxometalate(POM)into poly(4-vinyl pyridine)(P4 VP)brushes and the controlled reduction of silver ions,in-situ generating metal nanoparticles in the brushes.P4 VP brushes were straightforwardly created by UV-assisted photopolymerization of 4-vinyl pyridine(4VP)on silicon or glass substrates.Phosphotungstic acid(H3 PW12 O40),one of the most widely used Keggin-type POM was anchored onto these pyridine moieties through electrostatic interaction,leading to the P4 VP/POM hybrid brushes.The immobilized POM was further reduced to heteropolyblue,which could be used to generate silver nanoparticles in a controlled fashion.AFM,UV-vis and IR characterization indicate that P4 VP brushes not only provide an efficient platform in the controlled preparation of Ag nanoparticles,but also efficiently disperse and stabilize POM,thus preventing the aggregation of the generated Ag nanoparticles.  相似文献   

20.
Organic surfaces play a major role in materials science. Most surfaces that we touch in our daily lives are made from organic materials, e.g., vegetables, fruit, skin, wood, and textiles made from natural fibers. In the context of biology, organic surfaces play a prominent role too, proteins docking onto cell surfaces are a good example. To better understand the characteristics of organic surfaces, including physico-chemical properties like wettability or chemical reactivities and physical properties like friction and lubrication, a structurally well-defined model system that can be investigated with numerous analytical techniques is desirable. In the last two decades, one particular system, self-assembled monolayers or SAMs, have demonstrated their suitability for this purpose. In particular, organothiols consisting of an organic molecule with an attached SH-group are well suited to fabricating structurally well-defined adlayers of monolayer thickness on gold substrates using a simple preparation procedure. These ultrathin monolayers expose an organic surface with properties that can be tailored by varying the type of organothiol employed. After a short introduction into the preparation of SAMs, this article provides an overview of the possibilities and limitations of organic surfaces exposed by Au-thiolate SAMs. Applications are as diverse as the metallization of organic surfaces, a fundamental problem in materials science, and the fabrication of surfaces that resist the adsorption of proteins. In addition to a number of different case studies, we will also discuss the most powerful analytical techniques needed to characterize these important model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号