共查询到20条相似文献,搜索用时 15 毫秒
1.
Fajun Zhang 《European Polymer Journal》2003,39(12):2315-2322
The multiple melting behavior of several commercial resins of isotactic polypropylene (iPP) and random copolymer, poly(propylene-co-ethylene) (PPE), after stepwise isothermal crystallization (SIC) were studied by differential scanning calorimeter and wide-angle X-ray diffraction (WAXD). For iPP samples, three typical melting endotherms appeared after SIC process when heating rate was lower than 10 °C/min. The WAXD experiments proved that only α-form crystal was formed during SIC process and no transition from α1- to α2-form occurred during heating process. Heating rate dependence for each endotherm was discussed and it was concluded that there were only two major crystals with different thermal stability. For the PPE sample, more melting endotherms appeared after stepwise isothermal crystallization. The introduction of ethylene comonomer in isotactic propylene backbone further decreased the regularity of molecular chain, and the short isotactic propylene sequences could crystallize into γ-form crystal having a low melting temperature whereas the long sequences crystallized into α-form crystal having high melting temperature. 相似文献
2.
Poly(ethylene-2,6-naphthalate) (PEN) microfiber was continuously obtained by using a carbon dioxide (CO2) laser-thinning method. As a winding speed increased, the fiber diameter decreased, and its birefringence increased. When the PEN microfiber, obtained by irradiating the laser operated at a power density of 9.15 W cm−2 to the original fiber supplied at 0.33 m min−1, was wound up at 1594 m min−1, the obtained microfiber had a diameter of 2.8 μm, a birefringence of 0.174, tensile modulus of 5.4 GPa, and a tensile strength of 0.36 GPa. 相似文献
3.
The glass-transition temperature and non-isothermal crystallization of poly(trimethylene terephthalate)/poly(ethylene 2,6-naphthalate) (PTT/PEN) blends were investigated by using differential scanning calorimeter (DSC). The results suggested that the binary blends showed different crystallization and melting behaviors due to their different component of PTT and PEN. All of the samples exhibited a single glass-transition temperature, indicating that the component PTT and PEN were miscible in amorphous phase. The value of Tg predicted well by Gordon-Taylor equation decreased gradually with increasing of PTT content. The commonly used Avrami equation modified by Jeziorny, Ozawa theory and the method developed by Mo were used, respectively, to fit the primary stage of non-isothermal crystallization. The kinetic parameters suggested that the PTT content improved the crystallization of PEN in the binary blend. The crystallization growth dimension, crystallization rate and the degree of crystallinity of the blends were increased with the increasing content of PTT. The effective activation energy calculated by the advanced iso-conversional method developed by Vyazovkin also concluded that the value of Ea depended not only on the system but also on temperature, that is, the binary blend with more PTT component had higher crystallization ability and the crystallization ability is increased with increasing temperature. The kinetic parameters U* and Kg were also determined, respectively, by the Hoffman-Lauritzen theory. 相似文献
4.
Junliang Yang Ting Zhao Jijun Cui Leijing Liu Yunchun Zhou Gao Li Enle Zhou Xuesi Chen 《Journal of Polymer Science.Polymer Physics》2006,44(22):3215-3226
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L ‐lactide)–poly(ethylene glycol) (PLLA–PEG) diblock copolymers were investigated with wide‐angle X‐ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L ‐lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000–PEG5000 at a larger degree of supercooling was different from that of PLLA2500–PEG5000, PLLA5000–PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively. The PLLA block bonded chemically with the PEG block and increased the crystallization activation energy, but it provided nucleating sites for the crystallization of the PEG block, and the crystallization rate rose when it was heterogeneous nucleation. The number of melting peaks was three and one for the PEG homopolymer and the PEG block of the diblock copolymers, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3215–3226, 2006 相似文献
5.
Poly(1,4-oxybenzoate) (POB) and poly(2,6-oxynaphthoate) (PON) and their copolymers which have a well-established phase diagram have been studied with temperature-modulated differential scanning calorimetry (TMDSC). All the analyzed polymers have more than one disordering transition between the glass transition (from 400 to 430 K) and decomposition (starting at ≈700 K). Above the glass transition, the reversible heat capacity, Cp, increases beyond that calculated from the crystallinity and the known Cp of the solid and melt. This is likely due to an increase of mobility within the crystals and/or a possible rigid-amorphous fraction (mainly for the copolymers). The disordering transitions are largely irreversible, supporting the observation that semicrystalline, linear macromolecules show decreasing amounts of locally reversible melting with increasing rigidity and crystal perfection. 相似文献
6.
Fumiko Kimura Tsunehisa Kimura Akira Sugisaki Mamoru Komatsu Hiroaki Sata Eiko Ito 《Journal of Polymer Science.Polymer Physics》1997,35(16):2741-2747
In situ Fourier transform infrared (FTIR) measurements were carried out to elucidate conformation changes occurring during the isothermal melt crystallization of poly(ethylene-2,6-naphthalate) (PEN). Based on the band assignments for the components of the amorphous, α-crystal form, and β-crystal form of PEN in film samples, the in situ data was analyzed in terms of the amorphous- and crystal-trans conformations. It was observed at a higher isothermal crystallization temperature that the formation of amorphous-trans conformations precedes the growth of crystals. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2741–2747, 1997 相似文献
7.
The thermal properties, i.e., heat capacity, enthalpy, entropy, and Gibbs function, and the transition behavior of the copolymer system of 4-hydroxybenzoic acid and 2,6-hydroxynaphthoic acid have been studied based on differential scanning calorimetry. The heat capacities of the glass, crystal, and anisotropic melt are shown to be largely additive on a molar basis. Additivity is lost in the two transition regions, glass transition and disordering transition. Isothermal crystallization experiments on the copolymers revealed the existence of two types of crystals which melt at high temperature (fast-grown crystals) and low temperature (slowly grown crystals). The ATHAS computation method is used to bring heat capacities of the solid state into agreement with approximate frequency spectra. The changes in heat capacity at the glass transitions occur at 434°K for the poly(oxy-1,4-benzoyl) [33.2 J/(K mol)] and at 420°K for poly(oxy-2,6-naphthoyl) [46.5 J/(K mol)]. The copolymers have a transition range of above 100°K. The anisotropic melt is linked to the well-known condis state of poly(oxy-1,4-benzoyl) by a continuous changes in disorder and mobility without an additional first-order transition. 相似文献
8.
M. Soccio N. Lotti L. Finelli A. Munari 《Journal of Polymer Science.Polymer Physics》2008,46(8):818-830
The melting behavior and the crystallization kinetics of random poly(propylene/neopenthyl terephthalate) copolymers (PPT‐PNT) were investigated by means of differential scanning calorimetry and hot‐stage optical microscopy. Multiple endotherms were evidenced in the PPT‐PNT samples, due to melting and recrystallization processes, similarly to PPT. By applying the Hoffman‐Weeks' method, the Tm° of the copolymers was derived. Baur's equation described well the Tm‐composition data. The isothermal crystallization kinetics was analyzed according to the Avrami's treatment. The introduction of NT units decreased the crystallization rate in comparison to pure PPT. Values of the Avrami's exponent close to three were obtained in all cases, regardless of Tc, in agreement with a crystallization process originating from predeterminated nuclei and characterized by three dimensional spherulitic growth. As a matter of fact, space‐filling spherulites were observed by optical microscopy at all Tcs. Banded spherulites were found for PPT‐PNT5 and PPT‐PNT10, the band spacing being affected by both Tc and composition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 818–830, 2008 相似文献
9.
C. C. McDowell B. D. Freeman G. W. McNeely M. I. Haider A. J. Hill 《Journal of Polymer Science.Polymer Physics》1998,36(16):2981-3000
Random copolymers of poly(ethylene terephthalate) (PET) and poly(ethylene 2,6-naphthalate) (PEN) were synthesized by melt condensation. In a series of thin, solvent cast films of varying PEN content, acetone diffusivity and solubility were determined at 35°C and an acetone pressure of 5.4 cm Hg. The kinetics of acetone sorption in the copolymer films are well described by a Fickian model. Both solubility and diffusivity decrease with increasing PEN content. The acetone diffusion coefficient decreases 93% from PET to PET/85PEN, a copolymer in which 85 weight percent of the dimethyl terephthalate in PET has been replace by dimethyl naphthalate 2,6-dicarboxylate. The acetone solubility coefficient in the amorphous regions of the polymer decreases by approximately a factor of two over the same composition range. The glass/rubber transition temperatures of these materials rise monotonically with increasing PEN content. Copolymers containing 20 to 80 wt % PEN are amorphous. Samples with <20% or >80% PEN contain measurable levels of crystallinity. Estimated fractional free volume in the amorphous regions of these samples is lower in the copolymers than in either of the homopolymers. Relative free volume as probed by positron annihilation lifetime spectroscopy (PALS) decreases systematically with increasing PEN content. Acetone diffusion coefficients correlate well with PALS results. Infrared spectroscopy suggests an increase in the fraction of ethylene glycol units in the trans conformation in the amorphous phase as the concentration of PEN in the copolymer increases. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2981–3000, 1998 相似文献
10.
C. C. McDowell B. D. Freeman G. W. McNeely 《Journal of Polymer Science.Polymer Physics》1999,37(21):2973-2984
Interval sorption kinetics of acetone in solvent cast films of random poly(ethylene terephthalate)-co-(ethylene 2,6-naphthalate) (PET-co-PEN) are reported at 35°C and at acetone pressures ranging from 0 to 7.3 cm Hg. Polymer composition is varied systematically from 0% to 50% poly(ethylene 2,6-naphthalate). Equilibrium sorption is well described by the dual-mode sorption model. Interval sorption kinetics are described using a two-stage model that incorporates both Fickian diffusion and protracted polymer structural relaxation. The incorporation of low levels of PEN into PET significantly reduces the excess free volume associated with the glassy state and, for these interval acetone sorption experiments in ∼ 5 μm-thick films, decreases the fraction of acetone uptake controlled by penetrant-induced polymer structural relaxation. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2973–2984, 1999 相似文献
11.
S. Vyazovkin J. Stone N. Sbirrazzuoli 《Journal of Thermal Analysis and Calorimetry》2005,80(1):177-180
Summary By applying an advanced isoconversional method to DSC data one can evaluate a dependence of the effective activation energy (the temperature coefficient of the growth rate) on the relative extent of melt crystallization. The conversion dependence can further be converted into a temperature dependence and parameterized in terms of the Hoffman-Lauritzen equation. For poly(ethylene terephthalate) (PET) we observe a transition from regime I to II. Poly(ethylene oxide) (PEO) crystallization appears to begin in regime II and then undergoes 2 consecutive changes that however cannot be clearly interpreted as regime III. The Kg and e parameters obtained for regime I and II (PET) and regime II (PEO) are consistent with the respective parameters reported for isothermal crystallization. 相似文献
12.
13.
14.
Yoji Maeda Frank E. Karasz William J. MacKnight R. Vukovi 《Journal of Polymer Science.Polymer Physics》1986,24(10):2345-2357
The effect of pressure on the miscibility of blends of poly(2,6-dimethyl-l,4-phenylene oxide) (PPO) with a random copolymer of styrene and para-fluorostyrene, P(S-co-p-FS), has been studied by high pressure differential thermal analysis (HPDTA). P(S-co-p-FS) copolymers less than 36 mole % p-FS are miscible with PPO in all proportions irrespective of pressure up to 200 MPa, using the customary criterion of a single calorimetric glass relaxation. P(S-co-p-FS) copolymers containing 40 to 50 mole % p-FS undergo phase separation upon annealing at elevated temperatures, indicating the existence of a lower critical solution temperature (LCST). In these blends, pressure displaces the phase boundary associated with the LCST to higher temperatures causing an apparent increase in polymer miscibility. The phase diagram for the blend of PPO and P(S-co-p-FS) containing 46 mole % p-FS, shows that the critical composition at about 50 wt % PPO does not change with pressure, but the consolute temperature Tc increases with increasing pressure. The pressure dependence of the LCST (dTc/dP) of this system is about 0.35°C/MPa. 相似文献
15.
In situ composites based on poly(ethylene 2,6-naphthalate) (PEN) and a thermotropic liquid crystal polymer (Vectra A950) were prepared by melt blending under different processing conditions. Thermal behaviour, mechanical and physical properties and morphology of the blends were investigated. The DSC analysis indicates that, as expected, Vectra enhances the crystallization process of PEN. Moreover, mechanical and thermal tests evidence the significant role of 20 wt% Vectra on increasing the material performances; tensile properties, coupled with SEM, show that strength and modulus of PEN are significantly improved when Vectra domains are long and continuous fibrils. The overall results can be attributed to the compatibilisation of the system induced by the mixing conditions that affect the extent of transreactions occurring in the melt. To deepen this aspect, the soluble and insoluble fractions in a PEN solvent were isolated and thoroughly characterized: both the fractions contain PEN/Vectra copolymers. The results underline the potentiality of the PEN/Vectra system for different high-performance applications requiring superior strength and modulus, heat stability or barrier properties. 相似文献
16.
Jaedong Cho Ruijian Xu Fengji Yeh Benjamin S. Hsiao James Runt 《Macromolecular Symposia》2003,198(1):29-40
Time-resolved synchrotron wide- and small-angle X-ray scattering experiments were used to investigate crystallization behavior and microstructure development of a nearly monodisperse poly(ethylene oxide) [PEO] (Mw = 53,500), and its melt-miscible blends with two fractionated styrene - hydroxystyrene random copolymers [SHS]. PEO crystallization rates decrease significantly in the presence of the melt-miscible SHS copolymers. All low and high molecular weight SHS blends exhibit a crystallization process at relatively short times characterized by large Avrami exponents (n), followed by a dominant process with n near that of neat PEO. A model for the crystallization of these blends is proposed. 相似文献
17.
Poly(styrene-co-diethyl vinylphosphonate) copolymers were synthesized by free radical copolymerization. The ester groups of the copolymers were hydrolyzed to phosphonic acid groups, and the sodium and zinc salts ionomers were obtained by neutralization. The structure and the thermal and viscoelastic properties of the copolymers and ionomers were characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and small-angle X-ray scattering. The phosphonate ester lowered the glass transition temperature (Tg) of polystyrene. The free acid derivatives and metal phosphonates increased Tg and produced a rubbery plateau region in the viscoelastic properties due to the formation of a physical network. The acid and salt ionomers exhibited microphase-separated morphologies and were thermorheologically complex. The phosphonic acid derivatives absorbed relatively little water, even for materials with ion-exchange capacities greater than 1.0 mEq/g, and were not conductive, which made them unsuitable for application as proton exchange membranes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3628–3641, 2004 相似文献
18.
Random copolymers of cis- and trans-1,4-cyclohexylenedimethylene terephthalate were permitted to undergo ester-interchange reorganization at temperatures just below the melting point. As predicted from the principles of crystallization-induced reactions of semicrystalline copolymers proposed in the first two papers of this series, the copolymers were observed to undergo changes in physical properties which are associated with the conversion of a random to a block copolymer. The driving force for this antiequilibrium ordering process is believed to be the irreversible expansion of the crystalline regions following replacement of cis by trans glycol units. Solubility, crystallinity, and crystallization properties were monitored to determine the effects of copolymer composition, temperature, catalyst, and molecular weight on the reorganization rate. This type of process is also believed to be responsible for the direct preparation of block copolymers by a solid-state polycondensation reaction used in this study. 相似文献
19.
Ranimol Stephen Cécile M. Gibon Martin Weber Reinoud J. Gaymans 《Journal of polymer science. Part A, Polymer chemistry》2009,47(15):3904-3913
Poly(sulfone‐arylate) was synthesized in a reaction between dihydroxy polysulfone prepolymers and either diphenyl terephthalate or terephthaloyl chloride. The dihydroxy polysulfone prepolymers had molecular weights of 2000 and 4000 g/mol. The polymerization with diphenyl terephthalate was carried out at high temperature (280 °C) in the presence of a catalyst, whereas the polymerization with terephthalic chloride was conducted in solution at low temperature in the presence of an acid acceptor. High‐molecular weight copolymers (ηinh ~ 0.60 dL/g) could be obtained through both methods. The copolymers were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, DMA, and differential scanning calorimetry measurements and were found to exhibit high Tg values. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3904–3913, 2009 相似文献
20.
Synthesis,morphology, and nonisothermal crystallization behavior of poly(trimethylene terephthalate)/poly(propylene glycol) segmented random copolymers 下载免费PDF全文
Poly(trimethylene terephthalate)/poly(propylene glycol) (PTT/PPG) segmented random copolymers were synthesized by melt copolycondensation. The weight fraction of PPG blocks was ranged from 12.1 to 33.4 wt%, which was confirmed by 1H NMR spectroscopy. The result of wide‐angle X‐ray diffractometer indicated that all copolymers had the same crystal structure of PTT homopolymer at room temperature. At a determined crystallization temperature, ring‐banded spherulites could be observed in all copolymers samples, and the band spacing increased with the increase of PPG content. Morphologies of copolymers after nonisothermal crystallization process were strongly depended on the cooling rate. Well‐defined ring‐banded spherulites can be observed only at moderate cooling (20°C/min), while it was really hard to be observed at too low (2.5°C/min) or too high (by air‐quenching) cooling rate. Moreover, the size of spherulites decreased with the increase of cooling rate. Finally, different nonisothermal crystallization kinetics were adopt to analyze this copolymer system, and only the Mo method was suitable to describe this copolymer system. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献