首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
In this paper we introduce the notion of orbit matrices of Hadamard matrices with respect to their permutation automorphism groups and show that under certain conditions these orbit matrices yield self-orthogonal codes. As a case study, we construct codes from orbit matrices of some Paley type I and Paley type II Hadamard matrices. In addition, we construct four new symmetric (100,45,20) designs which correspond to regular Hadamard matrices, and construct codes from their orbit matrices. The codes constructed include optimal, near-optimal self-orthogonal and self-dual codes, over finite fields and over Z4.  相似文献   

2.
It is shown that the row spaces of certain generalized weighing matrices, Bhaskar Rao designs, and generalized Hadamard matrices over a finite field of order q are hermitian self-orthogonal codes. Certain matrices of minimum rank yield optimal codes. In the special case when q=4, the codes are linked to quantum error-correcting codes, including some codes with optimal parameters.  相似文献   

3.
In this paper we give constructions of self-orthogonal and self-dual codes, with respect to certain scalar products, with the help of orbit matrices of block designs and quotient matrices of symmetric (group) divisible designs (SGDDs) with the dual property. First we describe constructions from block designs and their extended orbit matrices, where the orbit matrices are induced by the action of an automorphism group of the design. Further, we give some further constructions of self-dual codes from symmetric block designs and their orbit matrices. Moreover, in a similar way as for symmetric designs, we give constructions of self-dual codes from SGDDs with the dual property and their quotient matrices.  相似文献   

4.
In 2003 Harada and Tonchev showed a construction of self-orthogonal codes from orbit matrices of block designs with fixed-point-free automorphisms. We describe a construction of self-orthogonal codes from orbit matrices of 2-designs admitting certain automorphisms with fixed points (and blocks). Further, we present a construction of self-orthogonal codes from quotient matrices of divisible designs and divisible design graphs.  相似文献   

5.
《Discrete Mathematics》2020,343(5):111795
Pairs of complementary sequences such as Golay pairs have zero sum autocorrelation at all non-trivial phases. Several generalizations are known where conditions on either the autocorrelation function, or the entries of the sequences are altered. We aim to unify most of these ideas by introducing autocorrelation functions that apply to any sequences with entries in a set equipped with a ring-like structure which is closed under multiplication and contains multiplicative inverses. Depending on the elements of the chosen set, the resulting complementary pairs may be used to construct a variety of combinatorial structures such as Hadamard matrices, complex generalized weighing matrices, and signed group weighing matrices. We may also construct quasi-cyclic and quasi-constacyclic linear codes which over finite fields of order less than 5 are also Hermitian self-orthogonal. As the literature on binary and ternary Golay sequences is already quite deep, one intention of this paper is to survey and assimilate work on more general pairs of complementary sequences and related constructions of combinatorial objects, and to combine the ideas into a single theoretical framework.  相似文献   

6.
Construction of binary and ternary self-orthogonal linear codes   总被引:1,自引:0,他引:1  
We construct new binary and ternary self-orthogonal linear codes. In order to do this we use an equivalence between the existence of a self-orthogonal linear code with a prescribed minimum distance and the existence of a solution of a certain system of Diophantine linear equations. To reduce the size of the system of equations we restrict the search for solutions to solutions with special symmetry given by matrix groups. Using this method we found at least six new distance-optimal codes, which are all self-orthogonal.  相似文献   

7.
The enumeration of strongly regular graphs with parameters (45, 12, 3, 3) has been completed, and it is known that there are 78 non-isomorphic strongly regular (45, 12, 3, 3) graphs. A strongly regular graph with these parameters is a symmetric (45, 12, 3) design having a polarity with no absolute points. In this paper we examine the ternary codes obtained from the adjacency (resp. incidence) matrices of these graphs (resp. designs), and those of their corresponding derived and residual designs. Further, we give a generalization of a result of Harada and Tonchev on the construction of non-binary self-orthogonal codes from orbit matrices of block designs under an action of a fixed-point-free automorphism of prime order. Using the generalized result we present a complete classification of self-orthogonal ternary codes of lengths 12, 13, 14, and 15, obtained from non-fixed parts of orbit matrices of symmetric (45, 12, 3) designs admitting an automorphism of order 3. Several of the codes obtained are optimal or near optimal for the given length and dimension. We show in addition that the dual codes of the strongly regular (45, 12, 3, 3) graphs admit majority logic decoding.  相似文献   

8.
Combinatorial designs have been widely used, in the construction of self-dual codes. Recently, new methods of constructing self-dual codes are established using orthogonal designs (ODs), generalized orthogonal designs (GODs), a set of four sequences and Diophantine equations over GF(p). These methods had led to the construction of many new self-dual codes over small finite fields and rings. In this paper, we used some methods to construct self-orthogonal and self dual codes over GF(p), for some primes p. The construction is achieved by using some special kinds of combinatorial designs like orthogonal designs and GODs. Moreover, we combine eight circulant matrices, a system of Diophantine equations over GF(p), and a recently discovered array to obtain a new construction method. Using this method new self-dual and self-orthogonal codes are obtained. Specifically, we obtain new self-dual codes [32,16,12] over GF(11) and GF(13) which improve the previously known distances.  相似文献   

9.
In this article we formulate an optimization problem of minimizing the distance from the uniform van der Waerden matrices to orthostochastic matrices of different orders. We find a lower bound for the number of stationary points of the minimization problem, which is connected to the number of possible partitions of a natural number. The existence of Hadamard matrices ensures the existence of global minimum orthostochastic matrices for such problems. The local minimum orthostochastic matrices have been obtained for all other orders except for 11 and 19. We explore the properties of Hadamard, conference and weighing matrices to obtain such minimizing orthostochastic matrices.  相似文献   

10.
We provide a classification method of weighing matrices based on a classification of self‐orthogonal codes. Using this method, we classify weighing matrices of orders up to 15 and order 17, by revising some known classification. In addition, we give a revised classification of weighing matrices of weight 5. A revised classification of ternary maximal self‐orthogonal codes of lengths 18 and 19 is also presented. © 2011 Wiley Periodicals, Inc. J Combin Designs 20:40–57, 2012  相似文献   

11.
Ternary self-orthogonal codes with dual distance three and ternary quantum codes of distance three constructed from ternary self-orthogonal codes are discussed in this paper. Firstly, for given code length n ≥ 8, a ternary [nk]3 self-orthogonal code with minimal dimension k and dual distance three is constructed. Secondly, for each n ≥ 8, two nested ternary self-orthogonal codes with dual distance two and three are constructed, and consequently ternary quantum code of length n and distance three is constructed via Steane construction. Almost all of these quantum codes constructed via Steane construction are optimal or near optimal, and some of these quantum codes are better than those known before.  相似文献   

12.
We provide methods and algorithms to construct Hermitian linear complementary dual (LCD) codes over finite fields. We study existence of self-dual basis with respect to Hermitian inner product, and as an application, we construct Euclidean LCD codes by projecting the Hermitian codes over such a basis. Many optimal quaternary Hermitian and ternary Euclidean LCD codes are obtained. Comparisons with classical constructions are made.  相似文献   

13.
We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the information rate R = 1/2, by our constructive lower bound, the relative minimum distance δ ≈ 0.0595 (for GV bound, δ ≈ 0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound. This work was supported by the China Scholarship Council, National Natural Science Foundation of China (Grant No.10571026), the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China, and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060286006)  相似文献   

14.
In this paper we establish a connection between full spark frames and totally nonsingular matrices. Then we provide a method for constructing infinite totally positive matrices which make up a subclass of the class of totally nonsingular matrices. Using this method we then construct a family of infinite totally positive matrices parameterized by non-negative numbers which contains, as the simplest case, the infinite Pascal matrix. The paper ends with some examples and comments on full spark frames.  相似文献   

15.
Symmetric designs and Hadamard matrices are used to construct binary and ternary self‐dual codes. Orthogonal designs are shown to be useful in construction of self‐dual codes over large fields. In this paper, we first introduce a new array of order 12, which is suitable for any set of four amicable circulant matrices. We apply some orthogonal designs of order 12 to construct new self‐dual codes over large finite fields, which lead us to the odd Leech lattice by Construction A. © 2005 Wiley Periodicals, Inc. J Combin Designs 13: 184–194, 2005.  相似文献   

16.
We describe a way of obtaining new weighing matrices from old, which we call weaving because it involves distributing rows and columns of given matrices along the columns and rows of an array to form a partitioned matrix whose blocks have rank one. The method generalizes both the direct sum and direct product of matrices. We use the method to construct some new weighing matrices of relatively small order. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
We obtain structural results about group ring codes over F[G], where F is a finite field of characteristic p > 0 and the Sylow p-subgroup of the Abelian group G is cyclic. As a special case, we characterize cyclic codes over finite fields in the case the length of the code is divisible by the characteristic of the field. By the same approach we study cyclic codes of length m over the ring R = F q [u], u r  = 0 with r  > 0, gcd(m, q) = 1. Finally, we give a construction of quasi-cyclic codes over finite fields.   相似文献   

18.
Generalized quasi-cyclic (GQC) codes have been investigated as well as quasi-cyclic (QC) codes, e.g., on the construction of efficient low-density parity-check codes. While QC codes have the same length of cyclic intervals, GQC codes have different lengths of cyclic intervals. Similarly to QC codes, each GQC code can be described by an upper triangular generator polynomial matrix, from which the systematic encoder is constructed. In this paper, a complete theory of generator polynomial matrices of GQC codes, including a relation formula between generator polynomial matrices and parity-check polynomial matrices through their equations, is provided. This relation generalizes those of cyclic codes and QC codes. While the previous researches on GQC codes are mainly concerned with 1-generator case or linear algebraic approach, our argument covers the general case and shows the complete analogy of QC case. We do not use Gröbner basis theory explicitly in order that all arguments of this paper are self-contained. Numerical examples are attached to the dual procedure that extracts one from each other. Finally, we provide an efficient algorithm which calculates all generator polynomial matrices with given cyclic intervals.  相似文献   

19.
Self-dual codes, which are codes that are equal to their orthogonal, are a widely studied family of codes. Various techniques involving circulant matrices and matrices from group rings have been used to construct such codes. Moreover, families of rings have been used, together with a Gray map, to construct binary self-dual codes. In this paper, we introduce a new bordered construction over group rings for self-dual codes by combining many of the previously used techniques. The purpose of this is to construct self-dual codes that were missed using classical construction techniques by constructing self-dual codes with different automorphism groups. We apply the technique to codes over finite commutative Frobenius rings of characteristic 2 and several group rings and use these to construct interesting binary self-dual codes. In particular, we construct some extremal self-dual codes of length 64 and 68, constructing 30 new extremal self-dual codes of length 68.  相似文献   

20.
In this paper1, we prove existence of optimal complementary dual codes (LCD codes) over large finite fields. We also give methods to generate orthogonal matrices over finite fields and then apply them to construct LCD codes. Construction methods include random sampling in the orthogonal group, code extension, matrix product codes and projection over a self-dual basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号