首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azo-containing polytetrahydrofuran (PTHF) obtained by cationic polymerization was used as a macroinitiator in the reverse atom transfer radical polymerization (RATRP) of styrene and methyl acrylate in conjunction with CuCl2/2,2′-bipyridine as a catalyst. Diblock PTHF–polystyrene and PTHF–poly(methyl acrylate) were obtained after a two-step process. In the first step of the reaction, stable chlorine-end-capped PTHF was formed with the thermolysis of azo-linked PTHF at 65–70 °C in the presence of the catalyst. Heating the system at temperatures of 100–110 °C started the polymerization of the second monomer, which resulted in the formation of block copolymers. The decomposition behavior of the azo-linked PTHF and the structure of the block copolymers were determined by 1H NMR and gel permeation chromatography (GPC). Kinetic studies and GPC analyses further confirmed the controlled/living nature of the RATRP initiated by the polymeric radicals. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2199–2208, 2002  相似文献   

2.
Polydimethylsiloxane (PDMS) block copolymers were synthesized by using PDMS macroinitiators with copper-mediated living radical polymerization. Diamino PDMS led to initiators that gave ABA block copolymers, but there was low initiator efficiency and molecular weights are somewhat uncontrolled. The use of mono- and difunctional carbinol–hydroxyl functional initiators led to AB and ABA block copolymers with narrow polydispersity indices (PDIs) and controlled number-average molecular weights (Mn's). Polymerization with methyl methacrylate (MMA) and 2-dimethylaminoethyl methacrylate (DMAEMA) was discovered with a range of molecular weights produced. Polymerizations proceeded with excellent first-order kinetics indicative of living polymerization. ABA block copolymers with MMA were prepared with between 28 and 84 wt % poly(methyl methacrylate) with Mn's between 7.6 and 35 K (PDI <1.30), which show thermal transitions characteristic of block copolymers. ABA block copolymers with DMAEMA led to amphiphilic block copolymers with Mn's between 9.5 and 45.7 K (PDIs of 1.25–1.70), which formed aggregates in solution with a critical micelle concentration of 0.1 g dm−3 as determined by pyrene fluorimetry experiments. Monocarbinol functional PDMS gave AB block copolymers with both MMA and DMAEMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1833–1842, 2001  相似文献   

3.
Block copolymers of hyperbranched polyethylene (PE) and linear polystyrene (PS) or poly(methyl methacrylate) (PMMA) were synthesized via atom transfer radical polymerization (ATRP) with hyperbranched PE macroinitiators. The PE macroinitiators were synthesized through a “living” polymerization of ethylene catalyzed with a Pd‐diimine catalyst and end‐capped with 4‐chloromethyl styrene as a chain quenching agent in one step. The macroinitiator and block copolymer samples were characterized by gel permeation chromatography, 1H and 13C NMR, and differential scanning calorimetry. The hyperbranched PE chains had narrow molecular weight distribution and contained a single terminal benzyl chloride per chain. Both hyperbranched PE and linear PS or PMMA blocks had well‐controlled molecular weights. Slow initiation was observed in ATRP because of steric effect of hyperbranched structures, resulting in slightly broad polydispersity index in the block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3024–3032, 2010  相似文献   

4.
A bromine capped star‐shaped poly(methyl methacrylate) (S‐PMMA‐Br) was synthesized with CuBr/sparteine/PT‐Br as a catalyst and initiator to polymerize methyl methacrylate (MMA) according to atom transfer radical polymerization (ATRP). Then, with S‐PMMA‐Br as a macroinitiator, a series of new liquid crystal rod–coil star block copolymers with different molecular weights and low polydispersity were obtained by this method. The block architecture {coil‐conformation of the MMA segment and rigid‐rod conformation of 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl] styrene segment} of the four‐armed rod–coil star block copolymers were characterized by 1H NMR. The liquid‐crystalline behavior of these copolymers was studied by differential scanning calorimetry and polarized optical microscopy. We found that the liquid‐crystalline behavior depends on the molecular weight of the rigid segment; only the four‐armed rod–coil star block copolymers with each arm's Mn,GPC of the rigid block beyond 0.91 × 104 g/mol could form liquid‐crystalline phases above the glass‐transition temperature of the rigid block. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 733–741, 2005  相似文献   

5.
A new catalytic system, FeCl3/isophthalic acid, was successfully used in the reverse atom transfer radical polymerization (RATRP) of methyl methacrylate (MMA) in the presence of a conventional radical initiator, 2,2′‐azo‐bis‐isobutyrontrile. Well‐defined poly(methyl methacrylate) (PMMA) was synthesized in an N,N‐dimethylformamide solvent at 90–120 °C. The polymerization was controlled up to a molecular weight of 50,000, and the polydispersity index was 1.4. Chain extension was performed to confirm the living nature of the polymer. The kinetics of the RATRP of MMA with FeCl3/isophthalic acid as the catalyst system was investigated. The apparent activation energy was 10.47 kcal/mol. The presence of the end chloride atom on the resulting PMMA was demonstrated by 1H NMR spectroscopy. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 765–774, 2001  相似文献   

6.
A new methodology is successfully used for the concurrent synthesis of three different copolymers; diblock, triblock, and three‐armed star‐block copolymers of styrene and isoprene via the living anionic polymerization with control over the molecular weight and weight fractions of each block. The room temperature polymerization process has resulted in the well defined linear and radial block copolymers, when the living di‐block of poly(styrene‐b‐isoprene) was coupled using cheap and readily available malonyl chloride as a novel coupling agent giving nearly 100% yield. The resulting block copolymers have narrow polydispersity index (PDI = 1.01–1.09) with a good agreement between the calculated and the observed molecular weights. The results are further supported by fractionation of the block copolymers by reversed‐phase temperature gradient interaction chromatography (RP‐TGIC) technique followed by size exclusion chromatography (SEC). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2636–2641, 2010  相似文献   

7.
The ability of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone (VDM), a highly reactive functional monomer, to produce block copolymers by reversible addition fragmentation chain transfer (RAFT) sequential polymerization with methyl acrylate (MA), styrene (S), and methyl methacrylate (MMA) was investigated using cumyl dithiobenzoate (CDB) and 2‐cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agents. The results show that PS‐b‐PVDM and PMA‐b‐PVDM well‐defined block copolymers can be prepared either by polymerization of VDM from PS‐ and PMA‐macroCTAs, respectively, or polymerization of S and MA from a PVDM‐macroCTA. In contrast, PMMA‐b‐PVDM block copolymers with controlled molecular weight and low polydispersity can only be obtained by using PMMA as the macroCTA. Ab initio calculations confirm the experimental studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
A three‐arm star azo side‐chain liquid crystalline (LC) homopolymer, poly[6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO), was synthesized by atom transfer radical polymerization (ATRP) method. The polymerization of 6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate proceeded in a controlled/“living” way. A series of three‐arm star LC block copolymers (PMMAZO‐b‐PMMA) were also synthesized. The polymers were characterized by 1H NMR, gel permeation chromatograph, and UV–vis spectra, respectively. The both polymers of PMMAZO and copolymers of PMMAZO‐b‐PMMA exhibited a smetic phase and a nematic phase. As concern to the PMMAZO, the glass‐transition temperature (Tg) and phase‐transition temperature from the smetic to nematic phase and from the nematic to isotropic phase increased with the increase of molecular weight (Mn(GPC)) of PMMAZO. The phase transition temperature of the block copolymers, PMMAZO‐b‐PMMA, with the same PMMA block was similar to that of PMMAZO. However, the Tg of the PMMAZO‐b‐PMMA decreased at low azo content and then increased with the increasing Mn(GPC) when azo content was above 61.3%. With illumination of linearly polarized Kr+ laser beam at modest intensities (35 mW/cm2), significant surface relief gratings formed on PMMAZO films with different molecular weights were observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 777–789, 2008  相似文献   

9.
Reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization of butyl methacrylate (BMA) and dodecafluoroheptyl methacrylate (DFMA) was carried out with 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as chain transfer agent (CTA). Concentration effects of RAFT agent and initiator on kinetics and molecular weight were investigated. No obvious red oil layer (phase's separation) and coagulation was observed in the first stage of homopolymerization of BMA. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. At 75 °C, the monomer conversion could achieve above 96% in 3 h with [momomer]:[RAFT]:[KPS] = 620:4:1 (mole ratio). The results showed excellent controlled/living polymerization characteristics and a very fast polymerization rate. Furthermore, the synthesis of poly(BMA‐b‐DFMA) diblock copolymers with a regular structure (PDI < 1.30, PMMA calibration) was performed by adding the monomer of DFMA at the end of the RAFT miniemulsion polymerization of BMA. The success of diblock copolymerization was showed by the molecular weight curves shifting toward higher molar mass, recorded by gel permeation chromatography before and after block copolymerization. Compositions of block copolymers were further confirmed by 1H NMR, FTIR, and DSC analysis. The copolymers exhibited a phase‐separated morphology and possessed distinct glass transition temperatures associated with fluoropolymer PDFMA and PBMA domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1585–1594, 2007  相似文献   

10.
A range of block copolymers (BCs) consisting of a linear poly(methyl methacrylate) (PMMA) block linked to an aliphatic polyester dendron functionalized with azobenzene moieties have been synthesized by sequential atom transfer radical polymerization (ATRP) and Click Chemistry. Two alkyne‐functionalized PMMA homopolymers with different molecular weights were obtained by ATRP and coupled to generations 2 to 4 of azodendrons bearing an azide group at the focal points. In the case of the azodendron with the highest generation number, the length of the flexible spacer attaching the cyanoazobenzene units to the dendron has also been modified. The coupling of both blocks and purity of BCs were checked by gel permeation chromatography, nuclear magnetic resonance, and infrared spectroscopy. The thermal transitions and liquid crystalline behavior of the BCs were investigated by differential scanning calorimetry and polarized‐light optical microscopy. A morphological study was carried out by transmission electron microscopy, using samples annealed at 115 °C. Photo‐induced anisotropy was induced in thin films of these materials after annealed at 115 °C. The highest stable birefringence values were obtained for the BCs bearing 8 and 16 azobenzene units in the dendritic block. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1538–1550, 2010  相似文献   

11.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

12.
甲基丙烯酸甲酯的反向原子转移自由基聚合反应 研究   总被引:3,自引:0,他引:3  
刘兵  胡春圃 《化学学报》2001,59(1):119-123
在较低的温度(60℃)和较低的AIBN/CuCl~2/配位剂摩尔比(1:2:4)条件下,用乙腈为溶剂,实现了甲基丙烯酸甲酯(MMA)的反向原子转移自由基聚合(RATRP)。联二吡啶(bpy)为配位剂时,所合成的聚甲基丙烯酸甲酯(PMMA)的分子量分布可低至1.08。用1,10-菲咯啉(phen)代替bpy,MMA的聚合反应速率加快,但其分子量分布稍宽(1.40左右),并进一步研究了bpy和phen作为混合配位剂时对MMA反向ATRP聚合的影响。用RATRP反应所得的带有卤素端基的PMMA作为苯乙烯ATRP的大分子引发剂,成功地合成了具有预期结构的苯乙烯与甲基丙烯酸甲酯嵌段共聚物,大分子引发剂的引发效率接近于1,说明在RATRP过程中由自由基引发剂引发MMA进行一般自由基聚合反应的可能性甚微。  相似文献   

13.
Via γ‐ray irradiation polymerization, poly(methyl methacrylate) (PMMA)/clay nanocomposites were successfully prepared with reactive modified clay and nonreactive clay. With reactive modified clay, exfoliated PMMA/clay nanocomposites were obtained, and with nonreactive clay, intercalated PMMA/clay nanocomposites were obtained. Both results were confirmed by X‐ray diffraction and high‐resolution transmission electron microscopy. PMMA extracted from PMMA/clay nanocomposites synthesized by γ‐ray irradiation had higher molecular weights and narrow molecular weight distributions. The enhanced thermal properties of the PMMA/clay nanocomposites were characterized by thermogravimetric analysis and differential scanning calorimetry. The improved mechanical properties of PMMA/clay were characterized by dynamic mechanical analysis. In particular, the enhancement of the thermal properties of the PMMA/clay nanocomposites with reactive modified clay was much more obvious than that of the PMMA/clay nanocomposites with nonreactive clay. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3218–3226, 2003  相似文献   

14.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

15.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

16.
Thin binary blends of poly(styrene‐b‐methyl methacrylate) (PS‐PMMA) block copolymers in films where the lamellar thickness of one domain is controlled while preserving the thickness of the other domain were demonstrated without microphase separation. One of the block copolymers used here was short and symmetric, and the other was long and asymmetric; the molecular weights of the PMMA block chains in the constituents were similar. A random copolymer brush was introduced and film thickness and composition of brush were adjusted to induce perpendicular orientation in thin film. As the blend composition of the long asymmetric block copolymer increased, the PS lamellar thickness increased from 15.8 to 25.1 nm, whereas the PMMA lamellar thickness remained constant at approximately 14 nm (the thickness decreased slightly from 14.0 to 13.3 nm). The domain spacing behavior in thin film was consistent in the bulk. These results were compared with the Birshtein, Zhulina, and Lyatskaya model and the theories for pure block copolymers in the strong segregation limit and in the intermediate segregation regime. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1393–1399  相似文献   

17.
The syntheses of random and block copolymers (using sequential monomer addition) of methyl methacrylate (MMA) and lauryl methacrylate (LMA) have been investigated by group transfer polymerization (GTP) over a wide composition range using tetrabutylammonium bibenzoate (TBABB) as catalyst and 1-methoxy-1-(trimethylsiloxy)-2-methyl-1-propene (MTS) as initiator in tetrahydrofuran (THF) at room temperature. The absolute molecular weight of the copolymers were determined by SEC-MALLS. The observed molecular weights were generally higher than the calculated molecular weights. However, the molecular weight distributions were very narrow (1.02–1.1). Use of trimethylsilyl benzoate as a “livingness enhancer” improved the livingness of the first block (PLMA) and block copolymers with no detectable contamination of homopolymer. Statistical copolymers of MMA and LMA were prepared, and the reactivity ratios of the two monomers under the defined conditions were determined. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1999–2007, 1997  相似文献   

18.
In this research, poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) block copolymers were prepared by 1,1‐diphenylethene (DPE) controlled radical polymerization in homogeneous and miniemulsion systems. First, monomer methyl methacrylate (MMA), initiator 2,2′‐azobisisobutyronitrile (AIBN) and a control agent DPE were bulk polymerized to form the DPE‐containing PMMA macroinitiator. Then the DPE‐containing PMMA was heated in the presence of a second monomer BA, the block copolymer was synthesized successfully. The effects of solvent and polymerization methods (homogeneous polymerization or miniemulsion polymerization) on the reaction rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) of polymers throughout the polymerization were studied and discussed. The results showed that, increasing the amounts of solvent reduced the reaction rate and viscosity of the polymerization system. It allowed more activation–deactivation cycles to occur at a given conversion thus better controlled living character and narrower molecular weight distribution of polymers were demonstrated throughout the polymerization. Furthermore, the polymerization carried out in miniemulsion system exhibited higher reaction rate and better controlled living character than those in homogeneous system. It was attributed to the compartmentalization of growing radicals and the enhanced deactivation reaction of DPE controlled radical polymerization in miniemulsified droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4435–4445, 2009  相似文献   

19.
Novel biodegradable poly(ester anhydride) block copolymers based on ε‐caprolactone (ε‐CL) and adipic anhydride (AA) were prepared by sequential polymerization. ε‐CL was first initiated by potassium poly(ethylene glycol)ate and polymerized into active chains (PCL‐O?K+), which were then used to initiate the ring‐opening polymerization of AA. The effects of the AA feed ratio, solvent polarity, monomer concentration, and temperature on sequential polymerization were investigated. The copolymers, obtained under different conditions, were characterized by Fourier transform infrared, 1H NMR, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). The GPC results showed that the weight‐average molecular weights of the block copolymers were approximately 6.0 × 104. The DSC results indicated the immiscibility of the two components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1511–1520, 2003  相似文献   

20.
A series of well‐defined hybrid block copolymers PMACyPOSS‐b‐PMMA and PMAiBuPOSS‐b‐PMMA exhibiting high POSS weight contents have been synthesized by RAFT polymerization and further studied as modifiers for epoxy thermosets based on diglycidyl ether of bisphenol A. The hybrid block copolymers self‐assembled within the epoxy precursors into micelles possessing an inorganic core and a PMMA corona. Thanks to the presence of the PMMA blocks that remain miscible until the end of the reaction, curing of the resulting blends afforded nanostructured hybrid organic/inorganic networks with well‐dispersed inorganic‐rich nanodomains with diameters on the order of 20 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号