首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The competition between intramolecular and bimolecular reactions of alkoxyl radicals formed from artemisinin was theoretically analyzed. The enthalpies of these reactions were calculated. The activation energies and rate constants of reactions of intramolecular hydrogen atom transfer, decyclization, and decomposition of alkoxyl radicals of artemisinin and several its derivatives, as well as the activation energies and rate constants of reactions of these radicals with the C-H, S-H, and O-H bonds in biological substrates and their analogs were calculated by the intersecting parabolas method The fastest reactions of artemisinin alkoxyl radicals were identified. The full kinetic scheme of transformation of these radicals was proposed. Artemisinin radicals with the free valence on the carbon atom are predominantly formed due to the transformation of the artemisininoxyl radicals. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1502–1510, September, 2006.  相似文献   

2.
The competition between monomolecular and bimolecular reactions of alkyl radicals of artemisinin is considered theoretically. The enthalpies of these reactions are calculated. The activation energies and rate constants of intramolecular hydrogen atom transfer, of the decyclization of the alkyl radicals of artemisinin, and of the bimolecular reactions of these radicals with C-H, S-H, and O-H bonds of biological substrates and their analogues are calculated in the framework of the parabolic model. The intramolecular hydrogen transfer reactions proceed at the highest rate. The bimolecular reactions occur somewhat less rapidly. The fastest of them are the reactions of the alkyl radicals with the thio groups of cysteine. The decyclization reactions of all artemisinin alkyl radicals are very slow.  相似文献   

3.
Six substituted 5-pyrimidinols were synthesized, and the thermochemistry and kinetics of their reactions with free radicals were studied and compared to those of equivalently substituted phenols. To assess their potential as hydrogen-atom donors to free radicals, we measured their O-H bond dissociation enthalpies (BDEs) using the radical equilibration electron paramagnetic resonance technique. This revealed that the O-H BDEs in 5-pyrimidinols are, on average, about 2.5 kcal mol(-1) higher than those in equivalently substituted phenols. The results are in good agreement with theoretical predictions, and confirm that substituent effects on the O-H BDE of 5-pyrimidinol are essentially the same as those on the Obond;H BDE in phenol. The kinetics of the reactions of these compounds with peroxyl radicals has been studied by their inhibition of the AIBN-initiated autoxidation of styrene, and with alkyl and alkoxyl radicals by competition kinetics. Despite their larger O-H BDEs, 5-pyrimidinols appear to transfer their phenolic hydrogen-atom to peroxyl radicals as quickly as equivalently substituted phenols, while their reactivity toward alkyl radicals far exceeds that of the corresponding phenols. We suggest that this rate enhancement, which is large in the case of alkyl radical reactions, small in the case of peroxyl radical reactions, and nonexistent in the case of alkoxyl radical reactions, is due to polar effects in the transition states of these atom-transfer reactions. This hypothesis is supported by additional experimental and theoretical results. Despite this higher reactivity of 5-pyrimidinols towards radicals compared to phenols, electrochemical measurements indicate that they are more stable to one-electron oxidation than equivalently substituted phenols. For example, the 5-pyrimidinol analogues of 2,4,6-trimethylphenol and butylated hydroxytoluene (BHT) were found to have oxidation potentials approximately 400 mV higher than their phenolic counterparts, but reacted roughly one order of magnitude faster with alkyl radicals and at about the same rate with peroxyl radicals. The 5-pyrimidinol structure should, therefore, serve as a useful template for the rational design of novel air-stable radical scavengers and chain-breaking antioxidants that are more effective than phenols.  相似文献   

4.
We describe the synthesis of a novel psoralen peroxide 1 that generates on irradiation (350 nml alkoxyl radicals, namely tert-butoxyl radicals, as confirmed by electron spin resonance studies with the spin trap 5,5-dimethyl-pyrroline-N-oxide. The radical source intercalates into the DNA, which has been demonstrated by linear-flow-dichroism measurements. Thus, the alkoxyl radicals are formed advantageously directly in the DNA matrix. In supercoiled pBR322 DNA, the generation of strand breaks by the photochemically or metal-catalyzed generated alkoxyl radicals is demonstrated. Photosensitization by the psoralen chromophore was excluded because similar substances that do not release radicals caused no DNA damage, nor were the photoproducts of the peroxide 1 active. With calf thymus DNA, 8-oxoGua and small amounts of guanidine-releasing products, e.g. oxazolone, were observed. However, in these reactions the photoproduct also displayed some DNA-oxidizing capacity.  相似文献   

5.
End-groups of poly(methyl methacrylate) from radical solution polymerization of MMA using tert-butyl peroxyacetate (TBPA), tert-amyl peroxyacetate (TAPA), 1,1,2,2- tetramethylpropyl peroxyacetate (TMPPA), and 1,1,3,3-tetramethylbutyl peroxyacetate (TMBPA) as the initiators were analyzed via electrospray ionization mass spectrometry (ESI-MS). The type and the relative concentration of the radical species, which actually initiate macromolecular growth, are determined. In the majority of cases, these species differ from the primary radicals from thermal decomposition of the peroxyacetates. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was applied for unambiguous peak assignment. The methylcarbonyloxyl radical, which is formed by the decomposition of all peroxyacetates, was found to undergo decarboxylation yielding an initiating methyl radical. TAPA- and TMPPA-derived alkoxyl radicals mainly show β-scission, TMBPA-derived alkoxyl radicals additionally undergo a 1,5-hydrogen-shift reaction. The tert-butoxyl radicals produced from TBPA undergo pronounced chain-transfer reaction prior to their decomposition into methyl radicals and acetone. In the case of using benzene as a relatively inert solvent, the tert-butoxyl radicals exhibit transfer to monomer yielding polymer molecules, which do not carry any initiator-derived end-groups. By using mesitylene as a cosolvent, small amounts of star polymer were generated via multiple hydrogen abstraction by tert-butoxyl radicals from the three individual methyl groups of mesitylene. This uncomplicated procedure of modification of end-group and polymer topology may be attractive for facile adjustment of polymer viscosity in technical processes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2453–2467, 2007  相似文献   

6.
Horner JH  Choi SY  Newcomb M 《Organic letters》2000,2(21):3369-3372
4-Nitrobenzenesulfenate esters were used as precursors for the generation of alkoxyl radicals under laser flash photolysis conditions. The esters were efficiently cleaved using the Nd:YAG third harmonic (355 nm) to produce alkoxyl radicals and the 4-nitrobenzenethiyl radical. Rate constants for beta-scission and 1, 5-hydrogen abstraction reactions of alkoxyl radicals were measured.  相似文献   

7.
The enthalpies, activation energies, and rate constants of the reactions of thio (amino) alkylphenols of different structures were calculated and compared with those of the reactions of alkyl-substituted phenols, alkoxyl and alkyl radicals, hydroperoxides, and nitrogen dioxide, as well as the reactions of phenoxyl radicals with molecules of the substrate being oxidized. The calculation was performed by the intersecting parabolas method using O-H bond energy data for phenols. The correlation between the molecular structure of the thio (amino) alkylphenols and their reactivity in radical reactions is considered.  相似文献   

8.
A series of p-nitrobenzenesulfenate esters was used in laser flash photolysis (LFP) studies to generate alkoxyl radicals that fragmented to give the (2,2-diphenylcyclopropyl)methyl radical. Rate constants for the beta-scission reactions increased as a function of the carbonyl compound produced in the fragmentation reaction in the order CH2O < MeCHO < Me2CO < PhCHO < Ph2CO and increased with increasing solvent polarity. For alkoxyl radicals that fragment to produce benzaldehyde and benzophenone, the beta-scission reactions are faster than 1,5-hydrogen atom abstractions when the incipient carbon radical is as stable as a secondary alkyl radical, and this entry to carbon radicals can be used in LFP kinetic studies.  相似文献   

9.
ESR spectroscopy coupled to the spin trapping technique was used to evaluate the generation of radical species arising from the ferrous ion induced decomposition of tert-butyl hydroperoxide (’BuOOH) in methylene chloride. We report here that N-tert-butyl-α-phenylinitrone (PBN) can trap peroxyl radicals generated in the ferrous ion induced breakdown of high concentration of ’BuOOH (IM) at room temperature, the radical adduct being stable under the light. The peroxyl radical formation was demonstrated by direct ESR measurements at 77K. In contrast, alkoxyl and methyl radicals were trapped only in the presence of low hydroperoxide concentration (ImM). In order to measure the hyperfine splitting constants (hfsc) of the PBN-methyl adduct spectra were obtained in the presence of diphenylamine (DPA) or 2,6-di-tert-butyl-4-methylphenol (BHT), which quenched the alkoxyl radical. For this latter radical, the hfsc were calculated by computer simulation. A mechanism for a direct interaction between DPA and the alkoxyl radical is presented. DPA quenched the peroxyl radical in the reaction of high hydroperoxide concentrations, with the concomitant generation of a DPA nitrogen-based radical.  相似文献   

10.
Free radical species are generally short-lived due to their high reactivity and thus direct measurement and identification are often impossible. In this study we used a spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), to trap radical intermediates formed during the oxidation of isomeric dipeptides tyrosine-leucine (Tyr-Leu) and leucine-tyrosine (Leu-Tyr), induced by the hydroxyl radical. To investigate the influence of the amino acid position in the peptide chain on the oxidation and free radical generation, the spin adducts were characterized using LC-MS and MS(n) . We detected carbon and oxygen DMPO adducts and adducts bearing two DMPO, which were analyzed by MS(n) . Both alkoxyl and peroxyl radicals were identified. Radical intermediates were localized in Tyr during oxidation of Tyr-Leu, while radicals were identified in Leu and Tyr during oxidation of Leu-Tyr. DMPO adducts of acyl radical species formed from cleavage of the peptide backbone, promoted by the alkoxyl radical in α carbon of the N-terminal amino acid were observed. The results show that the amino acid position has an influence in the oxidation process, at least on small peptides, and that the α carbon of the N-terminal amino acid is more vulnerable to the attack of the electrophilic hydroxyl radical.  相似文献   

11.
The enthalpies of intramolecular reactions of alkoxy and peroxy radicals formed from polyatomic artemisinin hydroperoxides and of their bimolecular reactions with C—H, S—H, and O—H bonds of biological substrates were calculated. The activation energies and rate constants of these reactions were calculated using the intersecting parabolas method. The decomposition of artemisinin hydroperoxides can initiate the cascade of intramolecular oxidation reactions involving radicals R·, RO·, HO·, HO2·, and RO2·. The main sequences of transformation of these radicals were established. The oxidative destruction of the artemisinin peroxy derivatives generates radicals RO2·, HO·, and HO2· in an amount of 4.5 radicals per peroxide derivative molecule on the average. The kinetic scheme of oxidative transformations of the hydroperoxide with four OOH groups and radicals formed from it was constructed using this radical as an example.  相似文献   

12.
The C—H bond dissociation energies were calculated on the basis of the parabolic model from the rate constants of free radical reactions for more than 160 oxygen-containing compounds. The enthalpies of formation of free radicals formed from these compounds were calculated. The method was modified taking into account the influence of functional groups on the partial rate constant and for the case when the reference reaction in the reaction series belongs to another class of structurally similar reactions.  相似文献   

13.
beta-(Phosphatoxy)alkyl radicals generated by photolysis of Barton PTOC esters in the presence of allyl alcohol and tert-butyl mercaptan undergo nucleophilic substitution followed by 5-exo-trig radical ring closure leading to tetrahydrofurans in good yield and with high trans selectivity. beta-(Phosphatoxy)alkyl radicals obtained by intramolecular hydrogen 1,5-abstraction with an alkoxyl radical undergo nucleophilic displacement providing tetrahydrofurans. The ensemble of results, including the effects of leaving groups and substituents, strongly support a dissociative mechanism for these radical nucleophilic displacement reactions.  相似文献   

14.
The inhibition of the autoxidation of hydrocarbons and polypropylene by aliphatic, aromatic, sterically hindered and cyclic phosphites has been studied by means of volumetric and 31P-NMR techniques. The antioxidant activity of phosphites depends on the rate of their reactions with peroxyl radicals and on the way they react with alkoxyl radicals. Only those phosphites which react by substitution to give free aryloxyl radicals are effective as chain-breaking antioxidants.The reaction modes of various phosphites with various peroxyl and alkoxyl radicals have been studied in some model reactions and the relationship between structure, reaction mechanism and antioxidant activity has been elucidated.  相似文献   

15.
It has been suggested that ultraviolet light induces free radical formation in skin, leading to photoaging and cancer. We have demonstrated by electron paramagnetic resonance that the ascorbate free radical is naturally present in unexposed skin at a very low steady state level. When a section of SKH-1 hairless mouse skin in an EPR cavity is exposed to UV light (4,500 J m−2−1, Xe lamp, 305 nm cutoff and IR filters), the ascorbate free radical signal intensity increases. These results indicate that UV light increases free radical oxidative stress, consistent with ascorbate's role as the terminal, small-molecule antioxidant. The initial radicals produced by UV light would have very short lifetimes at room temperature; thus, we have applied EPR spin trapping techniques to detect these radicals. Using α-[4-pyridyl 1-oxide]-N- tert -butyl nitrone (POBN), we have for the first time spin trapped a UV light-produced carbon-centered free radical from intact skin. The EPR spectra exhibited hyperfine splittings that are characteristic of POBN/alkyl radicals, aN= 15.56 G and aH= 2.70 G, possibly generated from membrane lipids as a result of β-scission of lipid alkoxyl radicals. Iron can act as a catalyst for free radical oxidative reactions; chronic exposure of skin to UV radiation causes increased iron deposition. Using our spin trapping system, we have shown that topical application of the iron-chelator, Desferal, to a section of skin reduces the UV light-induced POBN adduct radical signal. These results provide direct evidence for free radical generation and a role for iron in UV light-induced dermatopathology. We suggest that iron chelators can serve as photoprotective agents by preventing these oxidations.  相似文献   

16.
Enthalpy, activation energy, and rate constant of 9 alkyl, 3 acyl, 3 alkoxyl, and 9 peroxyl radicals with alkanethiols, benzenethiol, and L ‐cysteine are calculated. The intersection parabolas model is used for activation energy calculations. Depending on the structure of attacking radical, the activation energy of reactions with alkylthiols varies from 3 to 43 kJ mol?1 for alkyl radicals, from 7 to 9 kJ mol?1 for alkoxyl, and from 18 to 35 kJ mol?1 for peroxyl radicals. The influence of adjacent π‐bonds on activation energy is estimated. The polar effect is found in reactions of hydroxyalkyl and acyl radicals with alkylthiols. The steric effect is observed in reactions of alkyl radicals with tert‐alkylthiols. All these factors are characterized via increments of activation energy. Quantum chemical calculations of activation energy and geometry of transition state were performed for model reactions: C?H3 + CH3SH, CH3O? + CH3SH, and HO2? + CH3SH with using density functional theory and Gaussian‐98. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 284–293, 2009  相似文献   

17.
采用液相色谱-电子自旋共振波谱(LC/ESR)联用技术、液相色谱-质谱(LC/MS)联用技术结合自旋捕集技术,研究了脂氧合酶(LOX)催化双高-γ-亚麻酸(DGLA)脂质过氧化过程中产生的碳自由基.以α-[4-吡啶基-1-氧]-N-叔丁基氮酮(POBN)为自旋捕集剂,在LOX-DGLA反应混合物中与碳自由基形成自旋加合物后,根据各加合物在LC/UV/ESR和LC/MS中对应的保留时间,确定加合物的分子量,进一步根据加合物质谱裂解方式确定其结构.结果表明,在LOX催化DGLA脂质过氧化过程中产生的碳自由基主要包括~·C_7H_(13)O_2,~·C_(10)H_(17)O_2和~·C_5H_(11),分别来自DGLA脂氧自由基(8-,11-,15-LO~·)的β-裂解.此结果有利于进一步研究DGLA在体内的脂质过氧化过程及该过程中产生的碳自由基的生理作用.  相似文献   

18.
High-level quantum chemistry calculations have been carried out to investigate beta-scission reactions of alkoxyl radicals located at the alpha-carbon of a peptide backbone. This type of alkoxyl radical may undergo three possible beta-scission reactions, namely C-C beta-scission of the backbone, C-N beta-scission of the backbone, and C-R beta-scission of the side chain. We find that the rates for the C-C beta-scission reactions are all very fast, with rate constants of the order 10(12) s(-1) that are essentially independent of the side chain. The C-N beta-scission reactions are all slow, with rate constants that range from 10(-0.7) to 10(-4.5) s(-1). The rates of the C-R beta-scission reactions depend on the side chain and range from moderately fast (10(7) s(-1)) to very fast (10(12) s(-1)). The rates of the C-R beta-scission reactions correlate well with the relative stabilities of the resultant side-chain product radicals (*R), as reflected in calculated radical stabilization energies (RSEs). The order of stabilities for the side-chain fragment radicals for the natural amino acids is found to be Ala < Glu < Gln approximately Leu approximately Met approximately Lys approximately Arg < Asp approximately Ile approximately Asn approximately Val < Ser approximately Thr approximately Cys < Phe approximately Tyr approximately His approximately Trp. We predict that for side-chain C-R beta-scission reactions to effectively compete with the backbone C-C beta-scission reactions, the side-chain fragment radicals would generally need an RSE greater than approximately 30 kJ mol(-1). Thus, the residues that may lead to competitive side-chain beta-scission reactions are Ser, Thr, Cys, Phe, Tyr, His, and Trp.  相似文献   

19.
The kinetics and mechanism of initiation and reinitiation reactions in the polymerization of methyl methacrylate mediated by the ammonia–tripropylborane–oxygen and 2-isopropyl-2-boraadamantane–oxygen systems are studied by ESR spectroscopy using C-phenyl-N-tert-butylnitrone and 2-methyl-2-nitrosopropane as spin traps. It is shown that alkyl and alkoxyl radicals are the main initiating radicals and the rate of initiation is directly proportional to the concentration of oxygen. Two mechanisms of radical formation are valid in the postpolymerization of methyl methacrylate at room temperature under vacuum. The first one (which is predominant) is the decomposition of poly(methyl methacrylate)–boroxyl macromolecules, i.e., the reinitiation of polymerization; the second one (additional during the first 30 min of the process) is the decomposition of borane peroxide compounds accumulated during the stage of oxidation.  相似文献   

20.
The alkoxyl radical is an essential and prevalent reactive intermediate for chemical and biological studies. Here we report the first donor–acceptor complex‐enabled alkoxyl radical generation under metal‐free reaction conditions induced by visible light. Hantzsch ester forms the key donor–acceptor complex with N ‐alkoxyl derivatives, which is elucidated by a series of spectrometry and mechanistic experiments. Selective C(sp3)‐C(sp3) bond cleavage and allylation/alkenylation is demonstrated for the first time using this photocatalyst‐free approach with linear primary, secondary, and tertiary alkoxyl radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号