首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Friction‐deposited layers of atactic polystyrene (PS) on inert and OH‐grafted gold substrates were the subject of this study to establish a relationship between the friction process and the resulting anisotropy of the transferred polymer chains. We show, by using polarization‐modulation infrared reflection‐absorption spectroscopy that the deposited PS chains involve an anisotropy in which PS main backbone is rather perpendicular to the friction support, fact that is surprising when compared with the majority of polymers where the anisotropy is along the sliding direction. Moreover, our calculation of the orientation angles revealed that PS chains are more perpendicular in the transferred layers than in spin‐coated films. This particular anisotropy is probably due to a parallel reorientation of the phenyl ring on the friction support whatever the surface chemistry is. On the other hand, this study was useful to rectify the assignment of infrared bands unclearly reported in the literature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3272–3281, 2006  相似文献   

2.
The knowledge of the structure and orientation of polymer chains adsorbed at an interface could be of major importance to predict the level of interfacial interactions and adhesion that depend strongly on the properties of the interface formed between the two materials (polymer and substrate) brought into contact. In this work, we were interested to study thin films of atactic polystyrene after adsorption (spin‐coating) on two chemically different substrates (inert and OH‐grafted gold substrates). The main aim is to analyze the resulting anisotropy due to the confinement in a quasi‐bidimensional geometry, as well as to investigate the incidence of the interfacial interactions, potentially established between the polymer and the surface, on the chain organization. Our infrared spectroscopy results allowed us to access the adsorption model of polystyrene chains and to highlight the relation between chain orientation and interfacial acid–base interactions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1268–1276, 2006  相似文献   

3.
This study focuses on developing dry, surface‐tethered polymeric lubricant coatings capable of significantly decreasing friction and wear of nano‐ and micrometer scale machines. Vinyl‐terminated polydimethylsiloxane chains are spin‐coated with a crosslinking agent and platinum catalyst onto silicon wafers functionalized with a self‐assembling monolayer containing reactive vinyl groups. Lateral force microscopy (LFM) measurements employing a bead probe are used to quantify the coefficient of friction (COF) and adhesion characteristics of the PDMS‐SAM surface tethered networks. The combined polymer network and SAM layer manifest extremely low friction coefficients, μ = 4 × 10?3, which is nearly one order of magnitude lower than the friction coefficient of the bare silicon substrate. The lowest friction forces are measured using silicon substrates covered with nanometer thick, peroxide crosslinked PDMS networks; though poorly crosslinked, these networks display COFs as much as ten‐times lower than a solitary SAM coating layer. Micrometer thick end‐linked optimal networks also manifest attractive interfacial friction properties, with COFs approximately three times larger than the thinner, imperfect networks. These observations are discussed in terms of the structure of the polymer networks and the role of adhesion forces on interfacial friction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1773–1787, 2008  相似文献   

4.
During the curing process of a liquid‐crystalline epoxy resin, a relatively strong magnetic field was applied, and the thermomechanical properties of the cured resin were investigated. The network orientation and mechanical properties of the cured system were evaluated with wide‐angle X‐ray diffraction, dynamic mechanical analysis, and fracture toughness testing. The cured system was found to have an anisotropic network structure, which arranged along the applied field, and the anisotropy was reflected in the thermomechanical properties. In particular, the fracture toughness of the system dramatically increased when the network chains were arranged across the direction of the crack propagation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 758–765, 2004  相似文献   

5.
A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (σ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ~ σ(4/3), which is supported by our experimental data.  相似文献   

6.
Reversible addition fragmentation transfer (RAFT) agent functionalized polydimethylsiloxane (PDMS‐RAFT) was used as a macro‐RAFT agent to polymerize a mixed sandwich cobaltocene containing monomer featuring η5‐cyclopentadienyl‐cobalt‐η4‐cyclobutadiene. High molecular weight block copolymers (BCP) consisting of a metallic block and a PDMS block with excellent control over molecular weight and polydispersity were prepared. Solid‐state self‐assembly of this BCP resulted in hexagonal domains of metallopolymer phase‐separated from PDMS. In solution, spherical micelles with a metallic core, stabilized by a PDMS corona were prepared. Pyrolysis of the BCP resulted in magnetic nanoparticles with 30% char yield. The BCP was used as an ink material for microcontact printing (μCP) to transfer long‐ranged patterns. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2747–2754  相似文献   

7.
This paper is focused on the use of the Polarization-Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) for studying thin polymer films at interfaces. When forming a polymer film on a metallic substrate, for instance by spin-coating, the characterization of the polymeric layer becomes very difficult given the small amount of matter deposited and also because of the contact with the metal. Among the techniques well adapted to surface and interface analyses, the PM-IRRAS spectroscopy represents an excellent tool to probe ultra-thin films. Different systems have been selected in this study such as polyamides (PA) and ethylene-co-vinyl acetate (EVA) nanofilms spin-coated onto chemically controlled surfaces (i.e. thiol self-assembled monloayers grafted onto gold coated glass slides). PM-IRRAS spectroscopy allowed us to characterize the polymer anisotropy (chains orientation and conformation), to suggest a model for chain organization at the polymer/substrate interface, and to calculate the orientation angles. Moreover, we were able to determine, by using PM-IRRAS, the degree of crystallinity of PA and EVA films of nanometric dimensions without any calibration procedure needed by other techniques.  相似文献   

8.
The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.  相似文献   

9.
Three new polythiophenes containing an azobenzene moiety in the side‐chain were synthesized and characterized. Two of them, which are slightly soluble in tetrahydrofuran to allow the preparation of thin films from solution casting, were used to investigate the photoinduced anisotropy arising from the photoisomerization of azobenzene in this type of polymer. The results show that, unlike other amorphous azobenzene polymers, only an extremely small anisotropy can be induced on excitation with an Ar+ laser at 488 nm in these azobenzene‐containing polythiophenes, and that this photoinduced anisotropy is observable only by heating the polymer to some temperatures below glass transition temperature. It is suggested that the inability for azobenzene polythiophenes to display a significant photoinduced anisotropy may be caused by some structural constraints and/or a severe interference from conjugated thiophene chains that absorb strongly in the visible region. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3445–3455, 2004  相似文献   

10.
A new model has been developed to account for the dependence of the optical anisotropy of a dye polarizer on the dye concentration. The effect of the dye concentration has been studied through an examination of the changes in the orientation distribution of the polymer. The model takes into account the intrinsic optical anisotropy of the dichroic dye, the polymer orientation, the polymer orientation distribution, and the dye orientation with respect to the polymer. It is assumed that (1) the orientation distribution function of the polymer segments can be expressed as an elliptical distribution function and that (2) the free rotation of each dye molecule on its axis is suppressed because of the attraction force between the dye molecules and the polymer chains. The pseudo‐order parameter, which takes into account the aforementioned assumptions, determines the relation between single‐piece transmittance and polarizing efficiency. The orientation distribution of the polymer molecules in the experiment and its effect on the optical performance of a polarizer are quantitatively determined. The model predicts that the effect of the orientation distribution becomes more significant as the polymer chains are oriented more highly. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1363–1370, 2002  相似文献   

11.
Polyethylene–poly(dimethylsiloxane) copolymers were synthesized in solution from an ethylene monomer and an ω‐vinyl poly(dimethylsiloxane) (PDMS) macromonomer at 363 and 383 K with EtInd2ZrCl2/methylaluminoxane as a catalyst. The copolymers obtained were characterized with Fourier transform infrared spectroscopy, 1H and 13C NMR, size exclusion chromatography, and differential scanning calorimetry. The rheological properties of the molten polymers were determined under dynamic shear flow tests at small‐amplitude oscillations, whereas the physical arrangement of the phase domains was analyzed with scanning electron microscopy (SEM)/energy dispersive X‐ray (EDX). The analysis of the catalyst activity and the resulting polymers supported the idea of PDMS blocks or chains grafted to polyethylene. The changes in the rheological behavior and the changes in the Fourier transform infrared and NMR spectra were in agreement with this proposal. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2462–2473, 2004  相似文献   

12.
Scratch testing has been performed on elastomeric poly(dimethylsiloxane) (PDMS) coatings on stainless steel with a spherical indenter. The friction coefficient (horizontal‐to‐normal force ratio) during scratching decreases with increasing normal load. This result can be explained by assuming that during scratching the contact area is determined by elastic deformation and the horizontal force is proportional to the contact area. With increasing driving speed, the friction coefficient increases, but the rate of increase decreases; this suggests that the scratching of the PDMS coating is a rate process and that the viscoelastic property of the coating influences its frictional behavior. Below a critical normal load, which increases with the coating thickness, the PDMS coating recovers elastically after being scratched so that there are no scratch marks left behind. Above the critical normal load, the coating is damaged by a combination of delamination at the coating/substrate interface and through‐thickness cracking. When the coating is damaged, there is an increase in the friction coefficient, and the friction force displays significant fluctuations. Furthermore, the critical normal load increases with the driving speed; this implies that time is needed to nucleate damage. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1530–1537, 2002  相似文献   

13.
The electrophoresis of DNA chains in uncrosslinked polymer solutions with a Brownian dynamics simulation with an anisotropic friction tensor was analyzed. According to the degree of anisotropy, three types of migration behavior are obtained: fluctuation without or with periodicity between U‐shaped and compact conformations, or migration with linear conformation. We found good agreement between our simulation results and the direct observations of DNA by fluorescence microscopy. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1316–1322, 2003  相似文献   

14.
The rubberlike elastic behavior of bimodal poly(dimethylsiloxane) (PDMS) networks was investigated by the Monte Carlo simulation method and enumeration calculation method on the basis of the rotational‐isomeric‐state (RIS) model. These bimodal PDMS networks consist of short chains (chain length from 10 to 20) as well as long chains (chain length equal to 150). For long PDMS chains, through generating many PDMS conformations in the equilibrium state using the Monte Carlo simulation method we can obtain the average Helmholtz free energy and the average energy. For short PDMS chains with chain lengths from 10 to 20, as the total number of conformations is only from 6.56 × 103 to 3.87 × 108, we adopt the enumeration calculation method. The deformation is partitioned nonaffinely between the long and short chains, and this partitioning can be determined by requiring the free energy of the deformed network to be minimized. Chain dimensions and thermodynamic statistical properties of bimodal PDMS networks at various elongation ratios are discussed. We find that elastic force f increases with elongation ratio λ; the energy contribution fu to elastic force is significant, and the ratio of ranges from 0.15 to 0.36 at T = 343 K. In the meantime, elastic force f increases with the average energy 〈U〉. The energy change in the process of tensile elongation is taken over, which has been ignored in previous theories. Our calculations may provide some insights into the phenomena of rubberlike elasticity of bimodal networks. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 105–114, 2002  相似文献   

15.
In the study, a novel and low cost nanofabrication process is proposed for producing hybrid polydimethylsiloxane (PDMS) nanostructured arrays. The proposed process involves monolayer self-assembly of polystyrene (PS) spheres, PDMS nanoreplication, thin film coating, and PDMS to PDMS (PDMS/PDMS) replication. A self-assembled monolayer of PS spheres is used as the first template. Second, a PDMS template is achieved by replica moulding. Third, the PDMS template is coated with a platinum or gold layer. Finally, a PDMS nanostructured array is developed by casting PDMS slurry on top of the coated PDMS. The cured PDMS is peeled off and used as a replica surface. In this study, the influences of the coating on the PDMS topography, contact angle of the PDMS slurry and the peeling off ability are discussed in detail. From experimental evaluation, a thickness of at least 20 nm gold layer or 40 nm platinum layer on the surface of the PDMS template improves the contact angle and eases peeling off. The coated PDMS surface is successfully used as a template to achieve the replica with a uniform array via PDMS/PDMS replication process. Both the PDMS template and the replica are free of defects and also undistorted after demoulding with a highly ordered hexagonal arrangement. In addition, the geometry of the nanostructured PDMS can be controlled by changing the thickness of the deposited layer. The simplicity and the controllability of the process show great promise as a robust nanoreplication method for functional applications.  相似文献   

16.
The synthesis of poly[(oligoethylene glycol) methyl ether acrylate] [poly(OEGA)] brushes was achieved via reversible addition‐fragmentation chain transfer (RAFT) polymerization and used to selectively immobilize streptavidin proteins. Initially, gold surfaces were modified with a trithiocarbonate‐based RAFT chain transfer agent (CTA) by using an ester reaction involving a gold substrate modified with 11‐mercapto‐1‐undecanol and bis(2‐butyric acid)trithiocarbonate. poly(OEGA) brushes were then prepared via RAFT‐mediated polymerization from the surface‐immobilized CTA. The immobilization of CTA on the gold surface and the subsequent polymer formation were followed by ellipsometry, X‐ray photoelectron spectroscopy, grazing angle‐Fourier transform infrared spectroscopy, atomic force microscopy, and water contact‐angle measurements. RAFT‐mediated polymerization method gave CTA groups to grafted poly(OEGA) termini, which can be converted to various biofunctional groups. The terminal carboxylic acid groups of poly(OEGA) chains were functionalized with amine‐functionalized biotin units to provide selective attachment points for streptavidin proteins. Fluorescence microscopy measurements confirmed the successful immobilization of streptavidin molecules on the polymer brushes. It is demonstrated that this fabrication method may be successfully applied for specific protein recognition and immobilization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
The addition of a small amount of a poor solvent impurity (methanol) to a theta solvent (cyclohexane) is found to cause appreciable swelling (≈30% increase of the average brush height) in a model end‐grafted polystyrene (PS) brush layer. This unusual type of swelling is not observed if octadecyltrichlorosilane (OTS) is first grafted to the portion of the silicon substrate uncovered by the grafting end‐groups of the PS chains. Brush swelling in the absence of OTS surface protection is interpreted as arising from a segregation of methanol to the solid substrate and the resulting modification of the polymer–surface interaction. We also observe that the addition of a small amount of methanol to an adsorbed PS layer exposed to cyclohexane causes rapid film delamination from the silicon substrate. Together these observations imply a strong influence of surface active impurities on the structure and adhesive stability of polymer layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4126–4131, 2004  相似文献   

18.
The influence of shear on viscoelastic solutions of poly(ethylene oxide) (PEO) and clay [montmorillonite, i.e., Cloisite NA+ (CNA)] was investigated with rheology and small-angle neutron scattering (SANS). The steady-state viscosity and SANS were used to measure the shear-induced orientation and relaxation of the polymer and clay platelets. Anisotropic scattering patterns developed at much lower shear rates than in pure clay solutions. The scattering anisotropy saturated at low shear rates, and the CNA clay platelets aligned with the flow, with the surface normal parallel to the gradient direction. The cessation of shear led to partial and slow randomization of the CNA platelets, whereas extremely fast relaxation was observed for laponite (LRD) platelets. These PEO–CNA networklike solutions were compared with previously reported PEO–LRD networks, and the differences and similarities, with respect to the shear orientation, relaxation, and polymer–clay interactions, were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3102–3112, 2004  相似文献   

19.
Poly(methyl methacrylate) (PMMA) brushes are grown by surface‐initiated atom transfer radical polymerization on silicon surfaces at various polymerization temperatures. Kinetic studies show that the layer thickness scales linearly with the degree of polymerization of the polymers under some conditions, indicating a constant graft density of the surface‐attached chains. At high temperatures, the layer growth is a controlled process only for short reaction times, and after a rapid increase, the film growth levels off, and a constant thickness is obtained. At lower reaction temperatures, polymers with a lower polydispersity are obtained, but at the expense of a much slower growth rate. Accordingly, intermediate temperatures yield the highest film thickness on experimentally feasible timescales. The reinitiation of these surface‐grafted PMMA chains at room temperature to either extend the chains or grow a chemically different polyglycidylmethacrylate block demonstrates the presence of active ends and the living nature of the surface‐grafted PMMA chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1758–1769, 2006  相似文献   

20.
Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the transmembrane protein from the PDMS surface was found to be 75-81%. However, the transfer of non-specifically bound protein was substantially less than 75%, thus leading to the important finding that mechanical transfer of the EGF receptor leads to an approximately four-fold increase in signal-to-background from 20 : 1 to 88 : 1. The signal-to-background obtained following mechanical transfer is also better than that obtained using ELISA plates and stripping buffer (<48 : 1). The EGF receptor is a clinically important protein and the target of numerous anticancer agents and thus these results, when combined, provide guidance for the design of PDMS-based microanalytical systems for the capture and isolation of complex and clinically important transmembrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号