首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reversible addition‐fragmentation chain transfer copolymerization of dimethylaminoethyl acrylate (DMAEA) and methyl acrylate (MA) and their methacrylate counterparts (MMA) has been performed with good control over molecular weight and polydispersity. A screening in composition of copolymers has been performed from 0 to 75% of MA (or MMA). The behavior of these pH and temperature‐sensitive copolymers has been studied in aqueous solution by measuring the cloud point (CP) and the acid dissociation constants (pKa). The higher incorporation of the hydrophobic monomer in the copolymer resulted in an increase in the pKa values due to the larger distance between charges thus facilitating the protonation of adjacent nitrogens for both, the acrylate and methacrylate derivatives. The CP behavior of the copolymers has been studied in pure water and the CP values have been found to be irreproducible for the acrylate polymers, as a consequence of the self‐hydrolysis of DMAEA. Hence, kinetic studies have been performed to quantify the degree of self‐hydrolysis at different temperatures and polymer concentrations to explore the full potential and application of these versatile polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3333–3338  相似文献   

2.
pH sensitive inverse opal sensors were synthesized using various vinyl monomers containing acidic or basic substituents. Acrylic acid (AA), vinylphosphonic acid (VPA), vinylimidazole (VI), and dimethylaminoethylmethacrylic acid (DMAEMA) were respectively copolymerized with hydroxyethylmethacrylate (HEMA), the building block monomer of the hydrogel via UV-initiated photopolymerization. Opal templating and subsequent template removal enabled the fabrication of four inverse opal (IO) hydrogel colorimetric sensors, which responded to pH in different fashions. pH-dependent swelling of the IO hydrogel induced the red-shift of the diffracted color. The sensors containing AA or VPA, the proton donating monomers showed the color shifts from green to red with pH increase due to the increased concentration of carboxylate anions bound to the hydrogel. Diprotic VPA sensor exhibited two-step increases of diffracted wavelengths at its pKa1 and pKa2 respectively. The sensors containing proton acceptors, VI and DMAEMA showed the pH-dependent color changes in an opposite way to the AA sensor and the VPA sensor since their ionizations take place by lowering pH due to the protonation at the amino groups. The shapes of pH response curves of VI and DMAEMA sensors were similar but pKbs were different from each other. Optical diffraction responses of four sensors were compared with the calculated concentration ratios of the ionized species to the total monomer with pH variation, and a deswelling effect in the vicinities of pKas of phosphate buffer on the swelling response could be explained by shrinkage of PHEMA hydrogel under high ionic environment. In addition, copolymerization of AA, VPA and HEMA was carried out which resulted in a pH sensor exhibiting a wider range of pH for color change.  相似文献   

3.
The retinal protein proteorhodopsin is a homolog of the well‐characterized light‐driven proton pump bacteriorhodopsin. Basic mechanisms of proton transport seem to be conserved, but there are noticeable differences in the pH ranges of proton transport. Proton transport and protonation state of a carboxylic acid side chain, the primary proton acceptor, are correlated. In case of proteorhodopsin, the pKa of the primary proton acceptor Asp‐97 (pKa ≈ 7.5) is unexpectedly close to environmental pH (pH ≈ 8). A significant fraction of proteorhodopsin is possibly inactive at natural pH, in contrast to bacteriorhodopsin. We investigated photoinduced kinetics of proteorhodopsin between pH 5 and pH 9 by time resolved UV/vis absorption spectroscopy. Kinetics is inhomogeneous within that pH region and can be considered as a superposition of two fractions. These fractions are correlated with the Asp‐97 titration curve. Beside Asp‐97, protonation equilibria of other groups influence kinetics, but the observations do not point toward major differences of primary proton acceptor function in proteorhodopsin and bacteriorhodopsin. The pKa of proteorhodopsin and some of its variants is suspected to be an example of molecular adaptation to the physiology of the original organisms.  相似文献   

4.
Poly(methacrylic acid) (PMA) and poly(2‐ethyl‐2‐oxazoline) (PEOZO) are a polyacid/polybase pair capable of forming reversible, pH‐responsive, hydrogen‐bonding complexes stabilized by hydrophobic effects in aqueous media. Linear PMA was modified with long‐chain (number‐average molecular weight: 10,000) PEOZO via statistical coupling reactions in organic media to prepare a series of PMA‐graft‐PEOZO copolymers. Potentiometric titrations revealed that the presence of tethered PEOZO markedly increases the pKa values for PMA‐g‐PEOZO copolymers as compared with simple PMA/PEOZO mixtures at degrees of ionization, α, between 0.0 and 0.1. The dilute‐solution PMA–PEOZO intramolecular association has been probed by monitoring the PEOZO NMR spin–spin (T2) relaxation as a function of pH. Covalently attached PEOZO side chains participate in complexation at higher values of α than untethered PEOZO. Surprisingly, most PEOZO side chains did not take part in hydrogen bonding at low α, and the highest level of PEOZO incorporation induced a decrease in the number of PMA/PEOZO hydrogen bonds. The polymer self‐diffusion as a function of α was measured with dynamic light scattering. At low pH, the copolymers had no charge and they were in a collapsed form. At high pH, the expected conformational expansion of the PMA units was enhanced at moderate levels of PEOZO incorporation. However, the highest PEOZO incorporation induced the onset of intramolecular associations between PEOZO units along the copolymer chains. Low shear rheometry and light scattering measurements were used in conjunction with the T2 NMR measurements to propose a model consistent with the aforementioned behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2520–2533, 2004  相似文献   

5.
N-(4-Nitrobenzoyl)-Phe self-assembled into a transparent supramolecular hydrogel, which displayed high fibroblast and keratinocyte cell viability. The compound showed a mild antimicrobial activity against E. coli both as a hydrogel and in solution. Single-crystal XRD data revealed packing details, including protonation of the C-terminus due to an apparent pKa shift, as confirmed by pH titrations. MicroRaman analysis revealed almost identical features between the gel and crystal states, although more disorder in the former. The hydrogel is thermoreversible and disassembles within a range of temperatures that can be fine-tuned by experimental conditions, such as gelator concentration. At the minimum gelling concentration of 0.63 wt %, the hydrogel disassembles in a physiological temperature range of 39–42 °C, thus opening the way to its potential use as a biomaterial.  相似文献   

6.
The protonation‐deprotonation equilibrium of 6‐benzylaminopurine (6‐BAP) and its derivatives was studied by potentiometry and voltammetry. The effect of Cl‐ or OCH3‐group in position 2′, 3′ and 4′ of the benzene ring of 6‐BAP on both pKa values was investigated. To determine the enthalpy and entropy, the temperature dependence of pKa was employed. It was found that with increasing temperature the pKa decreased. In comparison with 6‐BAP the chloro‐ or methoxy‐ group resulted in pKa increase. The first pKa values were also determined by linear sweep (LSV) and elimination voltammetry with linear scan (EVLS). New approaches were shown not only for the determination of pKa from voltammetric titration curves but also for the evaluation of the reduction processes of benzylaminopurines.  相似文献   

7.
8.
The isoelectric points of amphoteric polyurethane (APU) with hydrophobic soft segments and pendent ? COOH and ? CH2N(CH3)2 groups and the effect of inorganic salts on the isoelectric points were investigated by the conductivity titration method. The pH values at isoelectric points agreed with the theoretical isoelectric point equations of Patrickios and Merle with pKa = 6.1 and pKb = 8.3, even though, as an ionomer, APU has a low density of ionizable groups on the macromolecular chains and takes a micellar state in aqueous media. The precipitation of APU waterborne dispersions also was observed around the isoelectric points and around lower or higher pH values with the ultraviolet spectrophotometric method. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2440–2448, 2002  相似文献   

9.
Thermodynamic pKa values for benzimidazole and several substituted benzimidazoles were determined by CE. Electrophoretic mobilities of benzimidazoles were determined by CE at different pH levels and ionic strengths. The dependence of electrophoretic mobilities on pH was used to obtain pKa values at different ionic strengths. Extrapolations to zero ionic strength were used to determine the thermodynamic pKa values. Using this method the thermodynamic pKa values of 15 benzimidazoles were determined and found to range from 4.48 to 7.38. Results from the CE measurements were compared with spectrophotometric measurements which were evaluated at wavelengths where the highest absorbance difference for varying pH was recorded. The two analytical techniques were in good agreement.  相似文献   

10.
The 13C chemical shifts of the diazanaphthalenes have been recorded as a function of the pH value, providing classical titration curves. From these curves the pK1 and pK2 values have been determined taking into account the activity coefficients. The changes in 13C chemical shift under the influence of nitrogen protonation (Δδ) can be described by two protonation parameter sets.  相似文献   

11.
Fourteen low molecular mass UV absorbing ampholytes containing 1 or 2 weakly acidic and 1 or 2 weakly basic functional groups that best satisfy Rilbe's requirement for being good carrier ampholytes (ΔpKa = pKamonoanion ‒ pKamonocation < 2) were selected from a large group of commercially readily available ampholytes in a computational study using two software packages (ChemSketch and SPARC). Their electrophoretic mobilities were measured in 10 mM ionic strength BGEs covering the 2 < pH < 12 range. Using our Debye-Hückel and Onsager-Fuoss laws-based new software, AnglerFish (freeware, https://echmet.natur.cuni.cz/software/download ), the effective mobilities were recalculated to zero ionic strength from which the thermodynamic pKa values and limiting ionic mobilities of the ampholytes were directly calculated by Henderson-Hasselbalch equation-type nonlinear regression. The tabulated thermodynamic pKa values and limiting ionic mobilities of these ampholytes (pI markers) facilitate both the overall and the narrow-segment characterization of the pH gradients obtained in IEF in order to mitigate the errors of analyte ampholyte pI assignments caused by the usual (but rarely proven) assumption of pH gradient linearity. These thermodynamic pKa and limiting mobility values also enable the reality-based numeric simulation of the IEF process using, for example, Simul (freeware, https://echmet.natur.cuni.cz/software/download ).  相似文献   

12.
Several carboxymethyl‐chitosan (CMCS) samples with different deacetylation degree and/or substituted degree were prepared from the carboxymethylation reaction of chitosan under soft conditions. The products were dissolved in standard HCl aqueous solution to carry out potentiometric titration by using NaOH as titrating solution at different ionic strengths. Then the dissociation behaviors of protonated carboxyl and amine groups were investigated under their degree of dissociation (α) and protonation constant (pKα) had been calculated. Moreover, influences of the intrinsic and extrinsic parameters on the dissociation behavior of CMCS were also considered in this article. As a result, dissociations of carboxyl and amine on CMCS exhibited unusual behaviors in comparison with carboxyl of carboxymethyl‐cellulose and amine groups of chitosan, respectively. The pKα values of carboxyl declined slightly at early dissociation stage but subsequently maintained constant. In contrast, the pKα of ammonium increased with its dissociation degree despite that there was an inflexed change on its dissociation curve. The potentiometric behavior of carboxyl was hardly affected by variation of deacetylation degree or substituted degree. However, these intrinsic parameters played more important role on dissociations of ammonium on CMCS. The ionic strength of media could bring screening effect on dissociaciation of both sorts of ionizable groups of CMCS. By increasing the ionic strength of media, screening effect on dissociations increased significantly. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1419–1429, 2008  相似文献   

13.
Sildenafil (ViagraTM) was examined for its ionization and lipophilicity by two‐phase titration and electrochemistry at the interface between two immiscible electrolyte solutions (ITIES) in the 1,2‐dichloroethane/H2O system. The dissociation constants (basic pKa=6.78, acidic pKa=9.12) and partition coefficients of the various species, together with the effects of electrical potential, were used to construct an ionic partition diagram (pH‐potential representation). This allowed to interpret the transfer mechanisms of sildenafil at liquid/liquid interfaces, suggesting in particular that an intramolecular H‐bond influences the lipophilicity of the neutral and cationic species. Conformational calculations confirmed this hypothesis.  相似文献   

14.
Glucose responsive block copolymer featuring boronic acid as a glucose responsive moiety and glycine are reported. The first block is polymerized through reversible addition–fragmentation chain transfer (RAFT) polymerization and the resulting poly(N‐acryloylmorpholine)113 (PAcM) is employed as a macro‐chain transfer agent for chain extension with pentafluorophenyl acrylate (PFPA) yielding a well‐defined PAcM113block‐poly(pentafluorophenyl acrylate)84 (PPFPA). The PPFPA block is then reacted with functional (3‐aminomethyl) phenyl boronic acid and glycine via post‐polymerization modification and the structure of the block copolymer is confirmed by proton nuclear magnetic resonance (NMR), 19F NMR, Fourier transform infrared, and gel permeation chromatography. By copolymerizing glycine into the polymer backbone, the relative pKa of the block copolymer is significantly lowered. The block copolymer can self‐assemble into core–shell micelles in aqueous solution and disassemble in response to glucose at the physiological pH. Furthermore, the encapsulation and release of Nile red (NR) as a hydrophobic model drug is studied under the physiological pH. The influence of the glucose concentration on the NR release from the polymeric micelles is demonstrated. These results suggested that the glucose‐responsive poly[(AcM)113b‐(3‐(aminomethyl)phenylboronic acid hydrochloride(‐co‐Gly)84] block copolymer has potential applications as a glucose‐responsive polymer for insulin delivery. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 422–431  相似文献   

15.
Two sets of terpolymers, polymer A and polymer B consisting of almost same level of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) component at 0.635 ± 0.005 m and varying dodecyl methacrylate (DoDMAc) and monomethoxy poly(ethylene glycol) acrylate (PEGAc) components have been designed. Polymer A, consisting of less C12 component, has been shown to promote intermolecular aggregated structures wherein C12 domains exhibit compact packing characteristics. It is demonstrated that in polymer B, AMPS segments are predominantly present as ionic clusters contributing to a high pKa at about 9.50 for a low α of 0.20. From the results of interfacial adsorption estimations at air/solution and water/hexane interface, it is shown that open coil structures provided under high pH (>9.0) conditions promote efficiency of adsorption. This is shown from higher surface excess concentration (Γ) and lower interfacial area (a) estimated using Gibbs adsorption isotherm equation. For example, at water/hexane interface, polymer A exhibits Γ of 1.20 × 10?3 moles/1000 m2 at pH 3.2 and 1.97 × 10?3 moles/1000 m2 at pH 10.0. Significantly, in case of polymer B consisting of ionic clusters of AMPS, adsorption at the liquid/liquid interface is more efficient in comparison to polymer A at all pH. © 2008 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 46: 3257–3271, 2008  相似文献   

16.
Ultraviolet, circular dichroism spectroscopies were used to examine the acid-base equilib-rium of a double-helix synthetic polyadenyl-polyuridyl Poly(A)-Poly(U) acid in neutral and alkaline aqueoussolutions. The deprotonation initially has a positive cooperativity which changes for negative at the deprotonation degree > 1/2. A model is proposed, that explains the titration curves and the complex dependence of pK a on pH for Poly(A)-Poly(U) in going from the neutral to alkaline region. The model is based on the allowance for the effect of immediate environment on the internal protonation constant of ideal polymer.  相似文献   

17.
Determining the net charge and protonation states populated by a small molecule in an environment of interest or the cost of altering those protonation states upon transfer to another environment is a prerequisite for predicting its physicochemical and pharmaceutical properties. The environment of interest can be aqueous, an organic solvent, a protein binding site, or a lipid bilayer. Predicting the protonation state of a small molecule is essential to predicting its interactions with biological macromolecules using computational models. Incorrectly modeling the dominant protonation state, shifts in dominant protonation state, or the population of significant mixtures of protonation states can lead to large modeling errors that degrade the accuracy of physical modeling. Low accuracy hinders the use of physical modeling approaches for molecular design. For small molecules, the acid dissociation constant (pKa) is the primary quantity needed to determine the ionic states populated by a molecule in an aqueous solution at a given pH. As a part of SAMPL6 community challenge, we organized a blind pKa prediction component to assess the accuracy with which contemporary pKa prediction methods can predict this quantity, with the ultimate aim of assessing the expected impact on modeling errors this would induce. While a multitude of approaches for predicting pKa values currently exist, predicting the pKas of drug-like molecules can be difficult due to challenging properties such as multiple titratable sites, heterocycles, and tautomerization. For this challenge, we focused on set of 24 small molecules selected to resemble selective kinase inhibitors—an important class of therapeutics replete with titratable moieties. Using a Sirius T3 instrument that performs automated acid–base titrations, we used UV absorbance-based pKa measurements to construct a high-quality experimental reference dataset of macroscopic pKas for the evaluation of computational pKa prediction methodologies that was utilized in the SAMPL6 pKa challenge. For several compounds in which the microscopic protonation states associated with macroscopic pKas were ambiguous, we performed follow-up NMR experiments to disambiguate the microstates involved in the transition. This dataset provides a useful standard benchmark dataset for the evaluation of pKa prediction methodologies on kinase inhibitor-like compounds.  相似文献   

18.
Capillary electrophoresis (CE) has been applied for determination of the thermodynamic acidity constants (pKa) of the sulfamidoalkyl and sulfonamidoalkyl groups, the actual and limiting ionic mobilities and hydrodynamic radii of important compounds, eight carborane-based inhibitors of carbonic anhydrases, which are potential new anticancer drugs. Two types of carboranes were investigated, (i) icosahedral cobalt bis(dicarbollide)(1-) ion with sulfamidoalkyl moieties, and (ii) 7,8-nido-dicarbaundecaborate with sulfonamidoalkyl side chains. First, the mixed acidity constants, pKamix, of the sulfamidoalkyl and sulfonamidoalkyl groups of the above carboranes and their actual ionic mobilities were determined by nonlinear regression analysis of the pH dependences of their effective electrophoretic mobility measured by capillary electrophoresis in the pH range 8.00−12.25, at constant ionic strength (25 mM), and constant temperature (25°C). Second, the pKamix were recalculated to the thermodynamic pKas using the Debye–Hückel theory. The sulfamidoalkyl and sulfonamidoalkyl groups were found to be very weakly acidic with the pKas in the range 10.78−11.45 depending on the type of carborane cluster and on the position and length of the alkyl chain on the carborane scaffold. These pKas were in a good agreement with the pKas (10.67−11.27) obtained by new program AnglerFish (freeware at https://echmet.natur.cuni.cz ), which provides thermodynamic pKas and limiting ionic mobilities directly from the raw CE data. The absolute values of the limiting ionic mobilities of univalent and divalent carborane anions were in the range 18.3−27.8 TU (Tiselius unit, 1 × 10−9 m2/Vs), and 36.4−45.9 TU, respectively. The Stokes hydrodynamic radii of univalent and divalent carborane anions varied in the range 0.34−0.52 and 0.42−0.52 nm, respectively.  相似文献   

19.
The mixed dissociation constant of naphazoline is determined at various ionic strengths I [mol dm−3] in the range of 0.01 to 0.26 and at temperatures of 25°C and 37°C using ESAB and HYPERQUAD regression analysis of the potentiometric titration data. A strategy of efficient experimentation is proposed in a protonation constant determination, followed by a computational strategy for the chemical model with a protonation constant determination. Two group parameters, L 0 and H T were ill-conditioned in the model and their determination is therefore uncertain. These group parameters, L 0 and H T, can significantly influence a systematic error in the estimated common parameter pKa and they always should be refined together with pK a. The thermodynamic dissociation constant pK aT was estimated by nonlinear regression of {pK a, I} data at 25°C and 37°C: for naphazoline pK alT = 10.41(1) and 10.13(2). Goodness-of-fit tests for various regression diagnostics enabled the reliability of the parameter estimates to be found.   相似文献   

20.
Summary: Nucleophilic aromatic substitution of 2,6‐O‐dimethyl‐β‐cyclodextrin (β‐DMCD)‐complexed 4‐fluoro‐3‐nitroaniline derivatives with poly(vinyl amine) (PVAm) in water results in 2‐nitro‐1,4‐benzenediamine‐functionalized water‐soluble PVAms in one step. The 2‐nitro‐1,4‐benzenediamine moiety linked to the polymer is solvatochromic and undergoes protonation and deprotonation as function of pH as shown by UV‐Vis spectroscopy. The occurrence of an isosbestic point in the UV‐Vis spectrum is suitable to directly determine the pKa value using the Henderson‐Hasselbalch equation. The influence of the methyl group substitution of the polymer and the 2‐nitro‐1,4‐benzenediamine moiety on the pKa is discussed.

Structure of the 4‐N,N‐dimethyl‐2‐nitro‐1,4‐benzenediamine‐functionalized PVAm and its solution in water at varying pH.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号