共查询到20条相似文献,搜索用时 62 毫秒
1.
Yung P. Koh Gregory B. McKenna Sindee L. Simon 《Journal of polymer science. Part A, Polymer chemistry》2006,44(24):3518-3527
The absolute heat capacity and glass transition temperature (Tg) of unsupported ultrathin films were measured with differential scanning calorimetry with the step-scan method in an effort to further examine the thermodynamic behavior of glass-forming materials on the nanoscale. Films were stacked in layers with multiple preparation methods. The absolute heat capacity in both the glass and liquid states decreased with decreasing film thickness, and Tg also decreased with decreasing film thickness. The magnitude of the Tg depression was closer to that observed for films supported on rigid substrates than that observed for freely standing films. The stacked thin films regained bulk behavior after the application of pressure at a high temperature. The effects of various preparation methods were examined, including the use of polyisobutylene as an interleaving layer between the polystyrene films. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3518–3527, 2006 相似文献
2.
Yung P. Koh Sindee L. Simon 《Journal of polymer science. Part A, Polymer chemistry》2008,46(24):2741-2753
The Tg depression and kinetic behavior of stacked polystyrene ultrathin films is investigated by differential scanning calorimetry (DSC) and compared with the behavior of bulk polystyrene. The fictive temperature (Tf) was measured as a function of cooling rate and as a function of aging time for aging temperatures below the nominal glass transition temperature (Tg). The stacked ultrathin films show enthalpy overshoots in DSC heating scans which are reduced in height but occur over a broader temperature range relative to the bulk response for a given change in fictive temperature. The cooling rate dependence of the limiting fictive temperature, Tf′, is also found to be higher for the stacked ultrathin film samples; the result is that the magnitude of the Tg depression between the ultrathin film sample and the bulk is inversely related to the cooling rate. We also find that the rate of physical aging of the stacked ultrathin films is comparable with the bulk when aging is performed at the same distance from Tg; however, when conducted at the same aging temperature, the ultrathin film samples show accelerated physical aging, that is, a shorter time is required to reach equilibrium for the thin films due to their depressed Tg values. The smaller distance from Tg also results in a reduced logarithmic aging rate for the thin films compared with the bulk, although this is not indicative of longer relaxation times. The DSC heating curves obtained as a function of cooling rate and aging history are modeled using the Tool-Narayanaswamy-Moynihan model of structural recovery; the stacked ultrathin film samples show lower β values than the bulk, consistent with a broader distribution of relaxation times. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2741–2753, 2008 相似文献
3.
Christopher J. Ellison John M. Torkelson 《Journal of Polymer Science.Polymer Physics》2002,40(24):2745-2758
Fluorescence was used to characterize the glass transition in thin and ultrathin supported polymer films with common chromophores. The temperature dependence of the fluorescence intensity exhibits a transition or break upon cooling from the rubbery state to the glassy state, and this is identified as the glass transition. A variety of chromophores are investigated including pyrene, anthracene, and phenanthrene either as dopants, covalently attached to the polymer as a label, or both. The particular choice of the chromophore as well as the nature of the attachment, in the case of labels, have significant impact on the success of this method. Problematic cases include those in which the excited‐state chromophore undergoes significant photochemistry in addition to fluorescence or those in which the particular attachment of the chromophore as a label may allow for conformational interactions that affect the fluorescence quantum yield in a nontrivial way. Polymers that have an intrinsic fluorescence unit, for example, polystyrene, may allow for the fluorescence sensing of the glass transition without added dopants or labels. Finally, it is demonstrated that this technique holds promise for the study of the glass transition in polymer blends and within specific locations in multilayer films. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2745–2758, 2002 相似文献
4.
Joseph Q. Pham Cynthia A. Mitchell Jeffrey L. Bahr James M. Tour Ramanan Krishanamoorti Peter F. Green 《Journal of polymer science. Part A, Polymer chemistry》2003,41(24):3339-3345
The glass-transition temperatures (Tg's) of nanocomposites of polystyrene (PS) and single-walled carbon nanotubes were measured in the bulk and in thin films with differential scanning calorimetry and spectroscopic ellipsometry, respectively. The bulk Tg of the nanocomposites increased by approximately 3 °C and became much broader than that of PS. For the nanocomposite films thinner than 45 nm, Tg decreased with decreasing film thickness [i.e., ΔTg(nano) < 0]. This phenomenon also occurred in thin PS films, the magnitude of the depression in PS [ΔTg(PS)] being somewhat larger. The film thickness dependence and the differences in the magnitude of ΔTg in the two systems were examined in light of current theory, and a quantitative comparison was made. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3339–3345, 2003 相似文献
5.
A novel temperature‐step experimental method that extends the Bodiguel‐Fretigny liquid dewetting method of investigating polymer thin films is described and results presented from an investigation of thickness effects on the glass transition temperature (Tg) of ultrathin polystyrene (PS) films. Unlike most other methods of thin film investigation, this procedure promises a rapid screening tool to determine the overall profile of Tg versus film thickness for ultrathin polymer films using a limited number of samples. Similar to our prior observations and other literature data, with this new method obvious Tg depression was observed for PS thin films dewetting on both glycerol and an ionic liquid. The results for PS dewetting on the two different liquids are similar indicating only modest effects of the substrate on the Tg‐film thickness relationship. In both instances, the Tg depression is somewhat less than for similar PSs supported on silicon substrates reported in the literature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1343–1349 相似文献
6.
A. R. C. Baljon S. Williams N. K. Balabaev F. Paans D. Hudzinskyy A. V. Lyulin 《Journal of Polymer Science.Polymer Physics》2010,48(11):1160-1167
In this article, we investigate the glass transition in polystyrene melts and free‐standing ultra‐thin films by means of large‐scale computer simulations. The transition temperatures are obtained from static (density) and dynamic (diffusion and orientational relaxation) measurements. As it turns out, the glass transition temperature of a 3 nm thin film is ~60 °K lower than that of the bulk. Local orientational mobility of the phenyl bonds is studied with the help of Legendre polynomials of the second‐order P2(t). The α and β relaxation times are obtained from the spectral density of P2(t). Our simulations reveal that interfaces affect α and β‐relaxation processes differently. The β relaxation rate is faster in the center of the film than near a free surface; for the α relaxation rate, an opposite trend is observed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1160–1167, 2010 相似文献
7.
A. Serghei Y. Mikhailova K.-J. Eichhorn B. Voit F. Kremer 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):3006-3010
The dynamic glass transition and the dilatometric glass transition temperature are simultaneously characterized in thin films of hyperbranched aromatic polyesters by broadband dielectric spectroscopy and capacitive scanning dilatometry. A diverging thickness dependence is detected: while the temperature position of the alpha relaxation peak Tα decreases by ∼30 K, the dilatometric Tg increases by ∼10 K with decreasing film thickness. This emphasizes the subtle character of the glass transition phenomenon—as manifested in the molecular dynamics and in the (structural) thermal expansion—and proves that, in contrast to the bulk, different experimental techniques do not necessarily deliver similar results in confinement. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3006–3010, 2006 相似文献
8.
Below a critical thickness, of about 60 nm, the glass transition temperature of polystyrene (PS) films decreases with film thickness, as demonstrated using free‐standing films. A geometrical model is developed here describing this phenomenon in the case of ideal (Gaussian) chains. This model, which can be considered as an application of the free volume model, assumes that the decrease of the glass transition temperature from thick to ultrathin films is due to the modification of the interpenetration between neighboring chains. The theoretical curve deduced from the model is in excellent agreement with the PS experimental results, without using any adjustable parameters. From these results, it can be concluded that new chain motions, usually buried in bulk samples, are expressed by the presence of the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 10–17, 2007 相似文献
9.
Shanhong Xu Paul A. O'Connell Gregory B. McKenna Sylvie Castagnet 《Journal of Polymer Science.Polymer Physics》2012,50(7):466-476
Prior studies of inflation of circular membranes of ultrathin polystyrene (PS) films have evidenced a reduced glass transition temperature (Tg) and rubbery stiffening, whose origins remain unclear. Here, we describe results from inflation of rectangular, ultrathin films of the same PS material. The bubble shapes obtained from the experiment are consistent with finite element (FE) simulations. The accuracy of three approximate solutions for modulus obtained from the inflation of the thin, rectangular films was evaluated by comparison with FE analysis. The best among the three solutions was used to determine the creep compliance and rubbery stiffness of the thin films. It is found that the reduction of Tg and the rubbery stiffening for rectangular bubbles are consistent with results obtained using circular bubbles, although there is some indication that the rectangular bubbles give somewhat greater rubbery stiffening. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 相似文献
10.
A liquid dewetting method for the determination of the viscoelastic properties of ultrathin polymer films has been extended to study thickness effects on the properties of ultrathin polycarbonate (PC) films. PC films with film thicknesses ranging from 4 to 299 nm were placed on glycerol at temperatures from below the macroscopic glass transition temperature (Tg) to above it with the dewetting responses being monitored. It is found that the isothermal creep results for films of the same thickness, but dewetted at different temperatures can be superposed into one master curve, which is consistent with the fact of PC being a thermorheologically simple material. Furthermore, the results show that the Tg of PC thin films is thickness dependent, but the dependence is weaker than the results for freely standing films and similar to literature data for PC films supported on rigid substrates. It was also found that the rubbery plateau region for the PC films stiffens dramatically, but still less than what has been observed for freely standing polycarbonate films. The rubbery stiffening is discussed in terms of a recently reported model that relates macroscopic segmental dynamics with the stiffening. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1559–1566 相似文献
11.
Nabila Shamim Yung P. Koh Sindee L. Simon Gregory B. McKenna 《Journal of Polymer Science.Polymer Physics》2014,52(22):1462-1468
Flash differential scanning calorimetry was used to study the glass transition temperature Tg of polycarbonate ultrathin films. The investigation was made as a function of film thickness from 22 to 350 nm and over a range of cooling rates from 0.1 to 1000 K/s. Polycarbonate spin cast films were floated on a layer of grease on the calorimetric chip. The results show a greatly reduced glass temperature for the thinnest films relative to the macroscopic value. We also observed that the magnitude of the glass temperature reduction decreases as the cooling rate increases with the highest cooling rates showing little thickness dependence of the Tg. Dynamic fragility and activation energy at Tg were found to decrease with decreasing film thickness. The results are discussed in the context of literature reports for supported and freely standing polycarbonate films. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1462–1468 相似文献
12.
Effects of POSS nanoparticles on glass transition temperatures of ultrathin poly(t‐butyl acrylate) films and bulk blends 下载免费PDF全文
Ufuk Karabiyik Rituparna Paul Michael C. Swift Sushil K. Satija Alan R. Esker 《Journal of Polymer Science.Polymer Physics》2015,53(3):175-182
As a model system, thin films of trisilanolphenyl‐POSS (TPP) and two different number average molar mass (5 and 23 kg mol?1) poly(t‐butyl acrylate) (PtBA) were prepared as blends by Langmuir–Blodgett film deposition. Films were characterized by ellipsometry. For comparison, bulk blends are prepared by solution casting and the samples are characterized via differential scanning calorimetry. The increase in Tg as a function of TPP content for bulk high and low molar mass samples are in the order of ~10 °C. Whereas bulk Tg shows comparable increases for both molar masses (~10 °C), the increase in surface Tg for higher molar mass PtBA is greater than for low molar mass (~22 °C vs. ~10 °C). Nonetheless, the total enhancement of Tg is complete by the time 20 wt % TPP is added without further benefit at higher nanofiller loads. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 175–182 相似文献
13.
Soyoung Kim Connie B. Roth John M. Torkelson 《Journal of polymer science. Part A, Polymer chemistry》2008,46(24):2754-2764
The effect of nanoscale confinement on the glass transition temperature, Tg, of freely standing polystyrene (PS) films was determined using the temperature dependence of a fluorescence intensity ratio associated with pyrene dye labeled to the polymer. The ratio of the intensity of the third fluorescence peak to that of the first fluorescence peak in 1-pyrenylmethyl methacrylate-labeled PS (MApyrene-labeled PS) decreased with decreasing temperature, and the intersection of the linear temperature dependences in the rubbery and glassy states yielded the measurement of Tg. The sensitivity of this method to Tg was also shown in bulk, supported PS and poly(isobutyl methacrylate) films. With free-standing PS films, a strong effect of confinement on Tg was evident at thicknesses less than 80–90 nm. For MApyrene-labeled PS with Mn = 701 kg mol−1, a 41-nm-thick film exhibited a 47 K reduction in Tg relative to bulk PS. A strong molecular weight dependence of the Tg-confinement effect was also observed, with a 65-nm-thick free-standing film exhibiting a reduction in Tg relative to bulk PS of 19 K with Mn = 701 kg mol−1 and 31 K with Mn = 1460 kg mol−1. The data are in reasonable agreement with results of Forrest, Dalnoki-Veress, and Dutcher who performed the seminal studies on Tg-confinement effects in free-standing PS films. The utility of self-referencing fluorescence for novel studies of confinement effects in free-standing films is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2754–2764, 2008 相似文献
14.
Ellipsometric study of the glass transition and thermal expansion coefficients of thin polymer films
The glass transition (Tg) of thin polystyrene films (ca. 3000 A?) cast on silicon wafers was determined by a new technique. An ellipsometer was used to determine the refractive index and thickness of the polystyrene films. Tg was determined by measuring the temperature dependence of the refractive index. The change in thickness with temperature was used to calculate the linear and bulk thermal expansion coefficients of the material. A significant shift in Tg, possibly due to strains induced in the cooled films, was observed between heating and cooling for polystyrene films. © 1993 John Wiley & Sons, Inc. 相似文献
15.
Above,below, and in‐between the two glass transitions of ultrathin free‐standing polystyrene films: Thermal expansion coefficient and physical aging 下载免费PDF全文
In previous work we observed two simultaneous transitions in high molecular weight (MW) free‐standing polystyrene films that were interpreted as two thickness‐dependent reduced glass transition temperatures (Tgs). The weaker lower transition agreed well with the MW‐dependent Tg(h) previously reported, while the much stronger upper transition matched the MW‐independent Tg(h) previously observed in low‐MW free‐standing films. Here, we investigate the nature of these two transitions by inspecting the temperature dependence of the films' thermal coefficient of expansion (TCE) and present physical aging measurements using ellipsometry both below and in‐between the two transitions. TCE values indicate approximately 80 to 90% of the film solidifies at the upper transition, while only 10 to 20% remains mobile to lower temperatures, freezing out at the lower transition. Physical aging is observed at a temperature below the upper transition, but above the lower transition, indicative of the upper transition being an actual glass transition associated with the α‐relaxation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 64–75 相似文献
16.
Jessica M. Torres Christopher M. Stafford David Uhrig Bryan D. Vogt 《Journal of Polymer Science.Polymer Physics》2012,50(5):370-377
The modulus and glass transition temperature (Tg) of ultrathin films of polystyrene (PS) with different branching architectures are examined via surface wrinkling and the discontinuity in the thermal expansion as determined from spectroscopic ellipsometry, respectively. Branching of the PS is systematically varied using multifunctional monomers to create comb, centipede, and star architectures with similar molecular masses. The bulk‐like (thick film) Tg for these polymers is 103 ± 2 °C and independent of branching and all films thinner than 40 nm exhibit reductions in Tg. There are subtle differences between the architectures with reductions in Tg for linear (25 °C), centipede (40 °C), comb (9 °C), and 4 armed star (9 °C) PS for ≈ 5 nm films. Interestingly, the room temperature modulus of the thick films is dependent upon the chain architecture with the star and comb polymers being the most compliant (≈2 GPa) whereas the centipede PS is most rigid (≈4 GPa). The comb PS exhibits no thickness dependence in moduli, whereas all other PS architectures examined show a decrease in modulus as the film thickness is decreased below ~40 nm. We hypothesize that the chain conformation leads to the apparent susceptibility of the polymer to reductions in moduli in thin films. These results provide insight into potential origins for thickness dependent properties of polymer thin films. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 相似文献
17.
18.
Atactic polystyrene, both side group and main chain deuterated, was investigated by inelastic neutron scattering in a wide temperature range around the glass transition from 2 to 450 K. In the glass the Boson peak position is only very weakly influenced by the deuteration of the phenyl group. In the neighborhood of the glass transition temperatureT
g we find a fast relaxation process similar to other glasses. The onset of the fast relaxation in polystyrene, however, is observed already at temperaturesT
g — 200 K. Results from partially deuterated polystyrene suggest a change of the phenyl ring dynamics already far belowT
g. 相似文献
19.
Daniel A. Savin Anne M. Larson Timothy P. Lodge 《Journal of Polymer Science.Polymer Physics》2004,42(7):1155-1163
The calorimetric glass‐transition temperature (Tg) and transition width were measured over the full composition range for solvent–solvent mixtures of o‐terphenyl with tricresyl phosphate and with dibutyl phthalate and for polymer–solvent mixtures of polystyrene with three dialkyl phthalates. Tg shifted smoothly to higher temperatures with the addition of the component with the higher Tg for both sets of solvent–solvent mixtures. The superposition of the differential scanning calorimetry traces showed almost no composition dependence for the width of the transition region. In contrast, the composition dependence of Tg in polymer–solvent mixtures was different at high and low polymer concentrations, and two distinct Tg's were observed at intermediate compositions. These results were interpreted in terms of the local length scale and associated local composition variations affecting Tg. The possible implications of these results for the dynamics of miscible polymer blends were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1155–1163, 2004 相似文献
20.
Sung Il Ahn Chang Woo OHk Jae Hyun Kim Wang‐Cheol Zin 《Journal of Polymer Science.Polymer Physics》2009,47(22):2281-2287
The continuous‐multilayer model introduced in our previous study for the Tg behavior of thin films is adapted to nanocomposite systems. Tg enhancement in both thin films and nanocomposites with attractive interfacial interactions can be explained by the same model. Various shapes of nanoparticles are proposed to rationalize the adaptation of the one‐dimensional model for the Tg behavior of thin film to three‐dimensional system such as nanocomposite. The tendency of predicted Tg enhancements in poly(methyl methacrylate) and P2VP nanocomposites with silica particles are qualitatively fit to experimental data in literatures. For the further quantitative fitting, the model is partially modified with the consideration for other factors affecting Tg deviation in nanocomposite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2281–2287, 2009 相似文献