首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article focuses on the structural analysis of polyhydroxyurethane obtained by the reaction of 2,2‐bis[p‐(1,3‐dioxolan‐2‐one‐4‐yl‐methoxy)phenyl]propane with a diamine based on the model reaction. The compounds obtained in the model reaction could be separated into hydroxyurethanes containing primary and secondary alcohol groups by preparative gel permeation chromatography with a recycling technique to determine the structures by 1H NMR, 13C NMR, distortionless enhancement by polarization transfer (DEPT) and C H correlation spectroscopy to obtain hydroxyurethane carrying the primary alcohol structure moiety dominantly. The ratios were independent of the reaction temperature but somewhat dependent on the solvents and amines. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 851–859, 2001  相似文献   

2.
Statistic and block copolymers exhibiting activated ester side groups were synthesized by reversible addition‐fragmentation chain transfer polymerization in the presence of cumyl dithiobenzoate, benzyl dithiobenzoate, and 4‐cyano‐4‐((thiobenzoyl)sulfanyl)pentanoic acid as chain transfer agents. Pentafluorophenyl methacrylate and pentafluorophenyl 4‐vinylbenzoate were used to enable a sequential functionalization of the obtained copolymers by conversion of the activated esters with different amines. 1H NMR spectroscopy, 19F NMR spectroscopy, and FTIR spectroscopy showed the successful step‐by‐step conversion of the different activated esters by aniline followed by aliphatic amines, thereby realizing a sequential functionalization of block copolymers with just one specific reactive group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3683–3692, 2010  相似文献   

3.
Novel sets of helical poly(phenylacetylene)s bearing a chiral ruthenium (Ru) complex with opposite chirality (Δ and Λ forms) as a bulky pendant (poly- 1 and poly- 2 ) were synthesized through the polymerization of the corresponding optically pure phenylacetylenes with a rhodium catalyst, and their structures in solution and morphology on solid substrates were investigated with NMR, ultraviolet–visible, and circular dichroism (CD) spectroscopies and with atomic force microscopy (AFM), respectively. The obtained cis–transoidal polymers (poly- 1 and poly- 2 ) showed characteristic Cotton effects in the region of metal-to-ligand charge transfer of the chiral Ru pendants. Poly- 1 and poly- 2 were thought to have a predominantly one-handed helical conformation induced by the chiral pendants. However, the apparent Cotton effects derived from the helically twisted π-conjugated polymer backbone could not be observed, probably because of the strong chiral chromophoric pendants. However, in the AFM images, the helical polymers adsorbed on mica could be easily discerned as isolated strands, and the visualization and discrimination of the right- and left-handed helical structures of the chiral polymers were achieved by high-resolution AFM imaging. On the basis of the AFM observations together with the CD measurements and computational calculation results, possible structures of poly- 1 and poly- 2 were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4621–4640, 2004  相似文献   

4.
Nuclear magnetic resonance (NMR) spectroscopy was employed to investigate both the end group microstructure of R-45HTLO hydroxyl-terminated polybutadiene (HTPB) and reactivity rate differences among the different types of end groups. There is some conflict in the literature about the exact nature of the end groups and which resonance frequencies represent the three main types of methylene-hydroxyl end groups (cis, trans, or vinyl) and other possible branch point end groups (geraniol). NMR spectral analysis of small molecule model compounds supports the cis, trans, and vinyl end groups model. A model reaction scheme is proposed that produces branch points without the requirement of any “geraniol” structures. The reaction, with and without catalyst, of the various HTPB end groups with three different monoisocyanates (2-fluorophenyl isocyanate, phenyl isocyanate, and tert-butyl isocyanate) monitored by NMR spectroscopy, revealed different reactivity rates that are correlated with the assigned structures. In both the catalyzed and uncatalyzed reactions, the vinyl end groups reacted slower than the cis or trans end groups. As expected, the bulky isocyanates were the slowest to react, while the isocyanate group with electron withdrawing groups reacted the fastest. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2665–2671  相似文献   

5.
A series of novel aromatic diamines ( 2 – 4 ) containing the alkyl‐, aryl, or chloro‐substituted group of phthalazinone segments were synthesized via two synthetic steps starting from 4‐(3‐R‐4‐hydroxyphenyl)‐2,3‐phthalazinone‐1 (R = Ph, CH3, Cl). Three series of aromatic polyamides containing phthalazinone moieties were prepared through diamines 2 – 4 reacting with different aromatic dicarboxylic acids via a direct Yamazaki–Higashi phosphorylation polycondensation reaction. The resulting aromatic polyamides had inherent viscosities in the range of 0.40–0.76 dL/g. The thermal property of the polyamides was examined with DSC and thermogravimetric analysis. The glass‐transition temperatures of these polyamides ranged from 298 to 340 °C. The 10% mass‐loss temperature was above 405 °C under nitrogen. Structures of monomers 2 – 4 and the polymers were confirmed by Fourier transform infrared spectroscopy, 1H NMR, and mass spectrometry. Good solubility of these polymers in polar solvents such as N‐methylpyrrolidone, dimethylformamide, dimethylacetamide (DMAc), and m‐cresol was observed, and tough, flexible films were obtained from the polymer's DMAc solutions. The effect of the substituted group on the physical property of polymers was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2026–2030, 2004  相似文献   

6.
4‐Chloro‐3‐methyl phenyl methacrylate (CMPM) and 8‐quinolinyl methacrylate (8‐QMA) were synthesized through the reaction of 4‐chloro‐3‐methyl phenol and 8‐hydroxy quinoline, respectively, with methacryloyl chloride. The homopolymers and copolymers were prepared by free‐radical polymerization with azobisisobutyronitrile as the initiator at 70 °C. Copolymers of CMPM and 8‐QMA of different compositions were prepared. The monomers were characterized with IR spectroscopy and 1H NMR techniques. The copolymers were characterized with IR spectroscopy. UV spectroscopy was used to obtain the compositions of the copolymers. The monomer reactivity ratios were calculated with the Fineman–Ross method. The molecular weights and polydispersity values of the copolymers were determined with gel permeation chromatography. The thermal stability of the polymers was evaluated with thermogravimetric analysis under a nitrogen atmosphere. The homopolymers and copolymers were tested for their antimicrobial activity againstbacteria, fungi, and yeast. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 157–167, 2005  相似文献   

7.
End groups after the thermal degradation of poly(ethylene terephthalate) (PET) and its cyclohexanedimethanol (CHDM) copolymer were characterized with 1H NMR. Thermally degraded polymers were obtained by heat treatment at 290 °C. For the PET homopolymer, a vinyl end group appeared, which resulted from thermal cis‐β‐elimination. For the CHDM copolymer, in addition to a vinyl end group, methylcyclohexene and cyclovinylidene end groups originating from CHDM were formed. The assignment of the 1H NMR spectrum was performed with information from 13C NMR and gas chromatography‐mass spectrometry. The total amounts of unsaturated species measured by NMR were compared with those estimated by bromination titration. There was good agreement between the values obtained by the two methods, indicating that all the major unsaturated species were accounted for. The mechanism of the formation of the unsaturated end groups was investigated. We suggest, on the basis of the NMR measurements, that the methylcyclohexene and cyclovinylidene groups originating from CHDM were formed by thermal cis‐β‐elimination as for the PET homopolymer. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 665–674, 2001  相似文献   

8.
To prepare novel polyimides with enhanced thermal stability and high solubility in common organic solvents, diamine monomers, 4‐aryl‐2,6 bis‐(4‐amino phenyl)pyridine, were introduced. The diamines were reacted with three different conventional aromatic dianhydrides including pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and hexafluoroisopropylidene‐2,2‐bis(phthalic‐dianhydride) (6FDA) in dimethylacetamide solvent to obtain the corresponding polyimides via the polyamic acid precursors and chemical imidization. The monomers and polymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, mass spectroscopy, and elemental analysis; and the best condition of polymerization and imidization were obtained via the study of model compound. The polyimides showed little or no weight loss by thermogravimetric analysis up to 500 °C, and those derived from 6FDA exhibited good solubility in various polar solvents. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3826–3831, 2001  相似文献   

9.
N,N′‐disubstituted hyperbranched polyureas with methyl, benzyl, and allyl substitutents were synthesized starting from AB2 monomers based on 3,5‐diamino benzoic acid. Carbonyl azide approach, which generates isocyanate group in situ on thermal decomposition, was used for the protection of isocyanate functional groups. The N‐substituted hyperbranched polymers can be considered as the new class of internally functionalized hyperbranched polyureas wherein the substituent can function either as receptor or as a chemical entity for selective transformations as a tool to tailor the properties. The chain‐ends were also modified by attaching long chain aliphatic groups to fully realize the interior functionalization. This approach opens up a possible synthetic route wherein different functional substituents can be used to generate a library of internally functionalized hyperbranched polymers. All the hyperbranched polyureas were characterized by FTIR, 1H‐NMR, DSC, TGA, and size exclusion chromatography. Degree of branching in these N,N′‐disubstituted hyperbranched polyureas, as calculated by 1H‐NMR spectroscopy using model compounds, was found to be lower than the unsubstituted hyperbranched polyurea and is attributed to the lower reactivity of N‐substituted amines compared to that of unsubstituted amines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5134–5145, 2004  相似文献   

10.
The free‐radical polymerization of styrene with p‐nitrobenzyl triphenyl phosphonium ylide as an initiator in dioxane at 80 ± 1 °C in a dilatometer under a nitrogen atmosphere for 150 min resulted in a syndiotactic polymer, as evidenced by IR, 1H NMR, and 13C NMR spectroscopy. A 1H NMR spectrum showed methylene protons as triplets; 13C NMR signals of the phenyl ipso carbons were used for the determination of the tacticity. The system followed ideal kinetics. Gel permeation chromatography data were used evaluate the weight‐average molecular weight. The overall activation energy was 47 kJ/mol. Electron spin resonance spectroscopy confirmed the initiation by the phenyl radical obtained by the dissociation of the ylide and the free‐radical mode of polymerization. Differential scanning calorimetry studies showed the glass‐transition temperature of the polymer to be 342 K. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6524–6533, 2005  相似文献   

11.
A series of thiophene‐containing photoactive copolymers consisting of alternating conjugated and nonconjugated segments were synthesized. The 1H NMR spectra corroborated the well‐defined structures, and the copolymers not only were soluble in common organic solvents but also had high glass‐transition temperatures (ca. 130 °C) and good thermal stability up to 390 °C. Introducing aliphatic functional groups, such as alkyl or alkoxyl, into chromophores of the copolymers redshifted the photoluminescence spectra and lowered the optical bandgaps. The electrochemical bandgaps calculated from cyclic voltammetry agreed with the optical bandgaps and thus indicated that electroluminescence and photoluminescence originated from the same excited state. The energy levels (highest occupied molecular orbital and lowest unoccupied molecular orbital) of all the copolymers were lower than those of poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1.4‐phenylenevinylene] MEH–PPV, indicating balanced hole and electron injection, which led to improved performance in both single‐layer and double‐layer polymeric‐light‐emitting‐diode devices fabricated with these copolymers. All the copolymers emitted bluish‐green or green light above the threshold bias of 5.0 V under ambient conditions. At the maximum bias of 10 V, the electroluminescence of a device made of poly(2‐{4‐[2‐(3‐ethoxy phenyl)ethylene]phenyl}‐5‐{4‐[2‐(3‐ethoxy,4‐1,8‐octanedioxy phenyl)ethylene]phenyl}thiophene) was 5836 cd/m2. The external electroluminescence efficiency decreased with the lifetime as the polymer degraded. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3954–3966, 2004  相似文献   

12.
This article concerns the hydrosilylation polyaddition of 1,4‐bis(dimethylsilyl)benzene ( 1 ) with 4,4′‐diethynylbiphenyl, 2,7‐diethynylfluorene ( 2b ), and 2,6‐diethynylnaphthalene with RhI(PPh3)3 catalyst. Trans‐rich polymers with weight‐average molecular weights (Mw's) ranging from 19,000 to 25,000 were obtained by polyaddition in o‐Cl2C6H4 at 150–180 °C, whereas cis‐rich polymers with Mw's from 4300 to 34,000 were obtained in toluene at 0 °C–r.t. These polymers emitted blue light in 4–81% quantum yields. The cis polymers isomerized into trans polymers upon UV irradiation, whereas the trans polymers did not. The device having a layer of polymer trans‐ 3b obtained from 1 and 2b demonstrated electroluminescence without any dopant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2774–2783, 2004  相似文献   

13.
Extended self‐polymerizable poly(phenylquinoxaline) monomer mixtures {i.e.,2‐[4‐(4‐hydroxyphenoxy)phenyl]‐3‐phenyl‐6‐chloroquinoxaline and 3‐[4‐(4‐hydroxy phenoxy)phenyl]‐2‐phenyl‐6‐chloroquinoxaline, 2‐[4‐(4‐hydroxyphenoxy)phenyl]‐3‐phenyl‐6‐fluoroquinoxaline and 3‐[4‐(4‐hydroxyphenoxy)phenyl]‐2‐phenyl‐6‐fluoroquinoxaline, and 2‐(4‐fluorophenyl)‐3‐phenyl‐6‐(4‐hydroxyphenoxy)quinoxaline and 3‐(4‐fluorophenyl)‐2‐phenyl‐6‐(4‐hydroxyphenoxy)quinoxaline} more flexible and nucleophilic than a previously reported monomer mixture [i.e., 3‐(4‐hydroxyphenyl)‐2‐phenyl‐6‐fluoroquinoxaline and 2‐(4‐hydroxyphenyl)‐3‐phenyl‐6‐fluoroquinoxaline] were synthesized. The monomer mixtures were then polymerized into high‐molecular‐weight polymers. A sample was obtained, through a chlorine displacement reaction, that was a semicrystalline polymer with an intrinsic viscosity of 1.11 dL/g in m‐cresol at 30 ± 0.1 °C and two melting temperatures at 339 and 377 °C in the first differential scanning calorimetry scan. There was a melting temperature at 328 °C without a detectable glass‐transition temperature (Tg) when the sample was subjected to a second differential scanning calorimetry scan. The samples from fluorine displacement reactions were completely amorphous polymers. They had intrinsic viscosities of 0.53–0.90 dL/g in m‐cresol at 30 ± 0.1 °C and Tg's of 220–224 °C. The polymer samples from fluorine displacement reactions were evaluated with gel permeation chromatography and matrix‐assisted laser desorption/ionization time‐of‐flight analyses, which monitored the existence of certain amounts of cyclic oligomers. The thin films of the polymers had room‐temperature tensile strengths of 97–113 MPa, room‐temperature Young's moduli of 2.30–2.35 GPa, and room‐temperature elongations at break of 40–150%. The melt viscosity decreased from 107 to less than 104 Pa s at 310 °C as the frequency was increased from 10?2 to 102 rad/s. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 78–91, 2005  相似文献   

14.
Novel poly(silylenemethylenes) have been prepared by the ring-opening polymerization of 1,3-disilacyclobutanes followed by a protodesilylation reaction with triflic acid. The silicon–aryl bond cleavage could be controlled by using different leaving groups, for instance phenyl- and para-anisyl substituents. The reactions of the triflate derivatives with organomagnesium compounds, LiAlH4, amines, or alcohols gave functional substituted poly(silylenemethylenes). Hydrosilylation reactions or reductive coupling with potassium–graphite led to organosilicon network–polymers, which may serve as suitable precursors for silicon carbide and Si/C/N-based materials. The structures of the polymers were identified by NMR spectroscopy (29Si, 13C, 1H). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 725–735, 1998  相似文献   

15.
Two new polyethers, bearing azobenzene moiety in the side chain, were synthesized in excellent yields by means of anionic polymerization of 4‐glycidyloxyazobenzene and 4‐cyano‐4′‐glycidyloxyazobenzene (leading to azo‐P1 and azo‐P2 polymers, respectively) with the system polyiminophosphazene base t‐Bu‐P4/3,5‐di‐tert‐butylphenol as initiator. The polymers were characterized with respect to their molecular weights, structure, and calorimetric features. The polyether bearing cyanoazobenzene group in the side chain was found to exhibit nematic phase up to 200 °C. E–Z isomerization of both polymers in tetrahydrofuran solution, after irradiating with UV light at 364 nm for 15 min, was investigated by means of UV–visible absorption spectroscopy. In the case of glycidylic monomers as well as the resulting polymers, E–Z isomerization was also investigated by means of 1H NMR, by direct irradiation in the NMR probe in deuterated 1,1,2,2‐tetrachloroethane solution. By this technique, in the case of 4‐cyano‐4′‐glycidyloxyazobenzene, it was found that irradiation led to a photostationary state corresponding to an amount of Z isomer equal to 25%. For azo‐P1 polymer, Z–E or “reverse” isomerization was investigated at 60, 70, or 80 °C directly in the NMR probe; as expected, the process followed a first‐order rate law. The kinetic constants as well as the activation energy for the process were determined in this temperature range. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5426–5436, 2009  相似文献   

16.
The insoluble fraction obtained from the hydrolysis and condensation of (4-dimethylamino-, 2-methyl-, and nonsubstituted)phenyltrimethoxysilanes in the presence of benzyltrimethylammonium hydroxide in benzene was characterized. IR, 1H NMR, and 29Si NMR suggested that the insoluble fraction was composed of RSi(O )3, that is, a T3 structure. X-ray diffraction indicated the presence of a long-range ordered structure composed of a mixture of crystals. Raman spectroscopy strongly suggested a cage structure by the presence of a ring-opening vibration assignable to a cubic structure at 475–482 cm−1. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4587–4597, 2004  相似文献   

17.
Carbohydrate‐modified polysiloxanes have been presented several times within the last decade. In this work, a new route to carbohydrate‐segmented polysiloxanes is presented. A series of allyl‐group‐containing bifunctional carbohydrate derivatives was synthesized and reacted with hydrodimethylsilyl‐terminated polysiloxane in hydrosilylation reactions with Speier's catalyst. The carbohydrate monomers and the resulting materials were fully characterized with 1H and 13C NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3814–3822, 2005  相似文献   

18.
The solubility of two partially deuterated thioindigo dopants in a smectic liquid crystal host was evaluated by variable temperature 2H NMR spectroscopy and polarized microscopy. 2H NMR spectra showed that the dopant (±)-6,6'-bis(2-octyloxy)-5,5-dinitrothioindigo-d 6 forms a homogeneous solution with the smectic phases of the liquid crystal host (±)-4-(4-methylhexyloxy)phenyl 4-decyloxybenzoate (PhB) up to its saturation point of 3 mol %. These results are consistent with polarized microscopy observations of the dopant crystallizing out of solution upon reaching a concentration of 3 mol %. On the other hand, 2H NMR spectra of (±)-5,5'-dichloro-6,6'-bis(2-octyloxy)thioindigo-d 6 dissolved in PhB showed evidence of a partitioning of the solution between smectic and isotropic microdomains, which increases with increasing dopant concentration—from 1.2 to 9.1 mol %. To a large extent, this smectic/isotropic microphase separation could not be detected by polarized microscopy. These results suggest that 2H NMR spectroscopy can provide a more accurate determination of the occurrence and extent of microphase separation in doped liquid crystal samples.  相似文献   

19.
Anionic and cationic ring‐opening polymerizations of two novel cyclotrisiloxanes, tetramethyl‐1‐(3′‐trifluoromethylphenyl)‐1‐phenylcyclotrisiloxane ( I ) and tetramethyl‐1‐[3′,5′‐bis(trifluoromethyl)phenyl]‐1‐phenylcyclotrisiloxane ( II ), are reported. Anionic ring‐opening polymerization of I or II leads to copolymers with highly regular microstructures. Copolymers obtained by cationic polymerizations of I or II , initiated by triflic acid, have less regular microstructures characteristic of chemoselective polymerization processes. The composition and microstructure of copolymers have been characterized by 1H and 29Si‐NMR, the molecular weight distributions by GPC, and the thermal properties by DSC and TGA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5235–5243, 2004  相似文献   

20.
A series of novel conjugated polymers, poly(silylacetylene silazane)s having different substituents, were prepared by ammonolysis of the corresponding α,ω‐dichlorosilyleneacetylene oligomers. The structures and properties of the poly(silylacetylene silazane)s were characterized by Fourier transform infrared, 1H, 13C, 29Si NMR, and elemental analyses, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, and spectrofluorophotometry. The resulting polymers had good thermal properties and were moderately fluorescent. Their thermal stability was improved, and obvious red shift was observed when a phenyl substituent was attached on a silicon atom of polymers in the emission spectra. These polymers have the potential to be used as light‐emitting materials with good thermal stability. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2897–2903, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号