首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parent Ca-montmorillonite (Jelšovy Potok, Slovakia, Ca-JP) and Na-montmorillonite Kunipia-F (Japan, Na-KU) were ion-exchanged with octadecyltrimethylammonium (ODTMA) cations. Characteristics of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR) and thermogravimetry (TG). Surface areas were measured by sorption of N2 and ethyleneglycol monoethyl ether. Scanning electron microscopy photographs (SEM) were used to characterize the texture of samples. The XRD patterns show that, upon intercalation, the basal spacing of montmorillonite is expanded and corresponds to the pseudotrimolecular arrangement of organic cations in the interlayers. The IR spectra of organically modified montmorillonite show C-H stretching and bending bands of both CH3 and CH2 groups in the 3000–2800 cm−1 and 1500–1400 cm−1 region, respectively. Modification of montmorillonite by organic cations decreased the hydrophilicity of their mineral surface and adsorbed water evaporated at lower temperatures. The SEM photographs reveal a tendency towards lump formation and agglomeration of the ODTMA-montmorillonite particles. The modification introducing organic moiety lead to a substantial decrease in the surface area of both montmorillonites; however, it remained remarkably high, being at the level typical for silica. Completely characterized fillers were used to prepare rubber compositions with enhanced physical properties, as described in Hrachová et al. (2008).  相似文献   

2.
Infrared (IR) spectroscopy using a smart endurance single bounce diamond attenuated total reflection (ATR) cell has been used to study the changes in the spectra of the surfactant octadecyltrimethylammonium (ODTMA) bromide upon intercalation into a sodium montmorillonite. The wavenumbers of bands attributed to CH-stretching and CH-bending vibrations, in general, decrease as the concentration of the surfactant measured in terms of the cation exchange capacity (CEC) up to 1.0 CEC. After this point, the bands increase approaching a value the same as that of the surfactant. Significant changes occur in the HCH deformation modes of the methyl groups of the surfactant. These changes are attributed to the methyl groups locking into the siloxane (SiO) surface of the montmorillonite. Such a concept is supported by changes in the SiO-stretching bands of the montmorillonite siloxane surface.  相似文献   

3.
The mechanochemical adsorption of phenol by laponite, saponite, montmorillonite, beidellite and vermiculite was studied by IR and X-ray spectroscopy. Mixtures containing phenol and clay in the ratio of 6:10 were manually ground by a mortar and pestle for 1,3,5 and 10 min and the ground mixtures were investigated. Depending on the basicity of the clay mineral and the time of grinding, two different associations between interlay er cations, water and phenol were identified. In these associations phenol can act either as a proton acceptor or donor (Configurations I and II, respectively). The phenol is more acidic than water and in most cases phenol acts as a proton donor. With montmorillonite and beidellite phenol acts as a proton acceptor. In this association the aromatic ring forms π bonds with atoms of the oxygen planes of the tetrahedral sheets which donate electrons to the anti-bonding π orbitals of the phenol.  相似文献   

4.
The intercalation of organic polymers molecules (i.e., PEGs and BRIJ) into a standard Ca-montmorillonite has been studied by XRD, TG, and IR spectroscopy. The polymer intercalation is confirmed by the increasing of the d(001) in XRD spectra as well as by the complex multisteps thermal decomposition behavior of the organo-clay materials. Mid-IR and diffuse reflectance near-IR spectra of the intercalated materials show the polymer diagnostic bands (CH stretching and deformation mode), shifted or changed in shape by the interaction with the clay matrix. Both PEG 1500 and PEG 4000 based materials are likely intercalated in an extended configuration, similar to the amorphous polymer form. BRIJ intercalated polymer spectra suggest the disordered conformation of the alkilic chain in a prevailing "gauche", poorly packed, conformation. Host montmorillonite IR bands, mainly OH and water stretching and deformation fundamentals, combination, and overtone bands, are reduced in intensity by polymer intercalation, pointing out an interaction, likely through H-bonding and/or a possible substitution of cations hydration water molecules.  相似文献   

5.
Natural montmorillonite was pillared by various polyhydroxy cations. The resulting pillared layer clays (PILCs) were characterized by X-ray fluorescence, X-ray diffraction (XRD) and infrared (IR) spectroscopies. The thermal behaviour of Al-PILC was investigated in detail by a combonation of XRD, derivatography IR spectroscopy and a comparison to natural montmorillonite is given. It was found that thermal stability of Al-PILC is lower than that of natural montmorillonite. However, heat treatment in the stability region results in significant sintering of natural montmorillonite, while the interlayer spacing of Al-PILC is hardly affected.  相似文献   

6.
Polarization of ethane and propane resulting from adsorption of these hydrocarbons by protons and different cations in mordenite, ZSM-5, and Y zeolites was studied by diffuse reflection Fourier transform IR spectroscopy (DRIFTS). Perturbation of adsorbed molecules by protons and sodium cations is weak, while positions of absorption bands for both these zeolites are very close to each other. In contrast, distributions of C-H IR stretching bands in intensities are somewhat different. This effect is pronounced much stronger for adsorption of light paraffins by bivalent alkaline earth and zinc cationic forms of these zeolites. Distribution of relative intensities of absorption bands strongly depends in this case both on the nature of cations and on the zeolites, while the most strongly perturbed vibrations are the initially fully symmetric C-H stretching vibrations. The corresponding low-frequency shifts and relative intensities of IR bands are increasing for different cations and zeolites in the following sequences: Na < Ca < Mg < Zn and Y < Mor approximately ZSM-5, while the difference in distribution of relative intensities of C-H stretching bands is pronounced much stronger than for the low-frequency shifts of these bands. Therefore, the relative intensities of IR C-H stretching bands are much better criterion of perturbation of light paraffins upon adsorption than the frequencies of these bands, which are traditionally used for this purpose. In addition, distribution of C-H IR stretching bands in intensity also provides unique information on anisotropy of polarizability of different C-H bonds created by their vibrations. For the acid and acid-base catalysis, where the main source of chemical activation arises from polarization of adsorbed molecules, such information is most important, while the anisotropy of polarizability provides a unique information on selective activation of different chemical bonds resulting from their stretching. The obtained results also demonstrate the possibility to use for testifying of the strength of Lewis acid sites instead of adsorption of the model molecular probes adsorption of the paraffins themselves.  相似文献   

7.
Physico-chemical study of selected surfactant-clay mineral systems   总被引:2,自引:0,他引:2  
A physicochemical study of the systems formed by the clay minerals, montmorillonite and kaolinite (layered) and sepiolite (non-layered) and the surfactants Triton X-100 (TX100, non-ionic), dodecyl sodium sulfate (SDS, anionic) and trimethyloctadecyl-ammonium bromide (ODTMA, cationic), with different chemical structure, was carried out by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and thermogravimetric and differential thermal analysis (TG/DTA). TG/DTA results indicated an increase in the thermal stabilization of non-ionic (TX100) and cationic (ODTMA) surfactants adsorbed by all clay minerals in relation to pure compounds. This effect was greater in montmorillonite and sepiolite than in kaolinite owing to these minerals must allow the establishment of a stronger bond with the surfactants as indicated by XRD and FTIR results. Differences in decomposition of anionic surfactant SDS are not emphasized due to the low adsorbed amount of this surfactant by all systems. The results obtained indicate the interest of taking into account the structure of surfactant and the clay mineral type when preparing customized surfactant-clay mineral systems which contribute to establish more efficient soil and water remediation strategies based in the use of these systems.  相似文献   

8.
阳离子替换磷灰石固溶体的比晶体化学   总被引:3,自引:0,他引:3  
黄志良  刘羽  王大伟  李国华  傅宗伦 《化学学报》2001,59(11):1970-1974
利用XTD,IR对不同阳离子替换的磷灰石(Ap)固溶体进行了比较晶体化学研究,结果表明:端元二价阳离子对Ap晶格常数(a0,c0)影响是线性的,符合Vegard规律,有较好的x-V习性,可作为阳离子半径测定的"结构尺";对于Cl-PO4体系的Ap,端元离子半径须在0.095~0.134nm之间才能形成空间群为P63/m的Ap结构;异价固溶体可以研究Ca(1)、Ca(2)位置的结晶化学差异,Ca(2)位在晶核形成期生成且决定了晶胞的框架,而Ca(1)位主要影响Co;随阳离子半径增加,[PO4]四面体的ν4,ν3,ν1红外振动峰向低频方向红移;Ap结构中发现"铅异常",形成原因是铅在Ca(2)位的较大电负性。  相似文献   

9.
The deep blue organoclay color pigment (OCCP), naphthylazonaphthylammonium–montmorillonite, was synthesized in an aqueous suspension by treating montmorillonite with naphthylammonium chloride followed after 2 h by NaNO2. The reddish-brown azo dye naphthylazonaphthylamine (commercial name “Solvent Brown 3”) was synthesized in an aqueous solution in the absence of clay from the same reagents. X-ray diffraction and thermo-infrared (IR) spectroscopy of organoclay prepared by treating montmorillonite with naphthylammonium chloride showed that the organoclay contained two types of tactoids with intercalated naphthylammonium cations and with naphthylammonium–naphthylamine associations. Naphthylammonium clay was obtained after thoroughly washing the latter organoclay. IR spectra of naphthylamine, naphthylammonium chloride, naphthylammonium clay, naphthylammonium–naphthylamine clay (with some naphthylammonium-clay), OCCP, and Solvent Brown 3 in KBr disks were recorded before and after thermal treatments up to 120 °C. IR spectrum of the OCCP was similar to that of Solvent Brown 3. An NH3 + group was identified in the spectrum of the OCCP but not in that of Solvent Brown 3. In the latter spectrum, an NH2 group was identified, suggesting that the amine group of the azo dye in the OCCP was protonated. It appears that the difference in color between OCCP and Solvent Brown 3 resulted from the protonation of the azo molecule in the interlayer space of the clay.  相似文献   

10.
The objective of this study was to investigate the spectral characteristics of tetracationic porphyrin dye (TMPyP), intercalated into films of three smectites. The smectites represented the specimens of high (Fluorohectorite; FHT), medium (Kunipia F montmorillonite; KF), and low layer charge (Laponite; LAP). Intercalation of TMPyP molecules was proven by XRD measurements. The molecular orientations of the dye cations were studied by means of linearly polarized ultraviolet-visible (UV-vis) and infrared (IR) spectroscopies. Both the UV-vis and the IR spectroscopy proved the anisotropic character of the films. The spectral analysis of the polarized UV-vis spectra and consequent calculations of tilting angles of the transition moments in the region of Soret band transitions were in the range of 25-35 degrees . The determined angles indicated that the molecular orientation of the dye cations was almost parallel to the surface of the silicates. Slightly higher values, determined for a FHT film, indicated either a slightly more tilted orientation of the dye cations or the change of molecular conformation after the intercalation of the dye. Quenching of TMPyP fluorescence was observed, resulting from the formation of bimolecular layer arrangements with sandwich-type assemblies of the dye molecules.  相似文献   

11.
Structural and vibrational features of Na-montmorillonite and montmorillonite intercalated with tetramethylammonium cation (TMA+) were characterized theoretically and experimentally. Theoretical study was performed using density functional theory with inclusion of dispersion corrections. The analysis of the hydrogen bonds in the calculated models has shown that the Na+ cations coordinated by six water molecules (Na-M model) are bound to montmorillonite layers by moderate hydrogen bonds between water molecules and basal oxygen atoms of the tetrahedral sheets. Hydrated Na+ cations are stabilized by relatively strong hydrogen bonds among water molecules. In the intercalate model, the TMA+ cation is fixed in the interlayer space by weak hydrogen bonds between the methyl groups and basal oxygen atoms of montmorillonite layers. The calculated vibrational spectra are in a good agreement with the measured infrared spectra. The detailed analysis of the simulated vibrational spectra allowed unambiguous identification of corresponding bands in the measured spectra and their assignment to the particular vibrational modes. For example, calculations clearly distinguished between AlMgOH and AlAlOH stretching vibrations and also between the coupled vibrations of the methyl groups of the TMA+ cations.  相似文献   

12.
Surfaces of a Wyoming SWy-2 sodium montmorillonite were modified using microwave radiation through intercalation with the cationic surfactants octadecyl-trimethyl ammonium bromide, dimethyldioctadecylammonium bromide, and methyl-tri-octadecyl ammonium bromide by an ion exchange mechanism. Changes in the surfaces and structure were characterized using X-ray diffraction (XRD), thermal analysis (TG) and infrared (IR) spectroscopy. Different configurations of surfactants within montmorillonite interlayer are proposed based on d(001) basal spacings. A range of surfactant molecular environments within the surface-modified montmorillonite are proposed based upon their thermal decomposition. IR spectroscopy using a smart endurance single bounce diamond attenuated total reflection (ATR) cell has been used to study the changes in the spectra of CH asymmetric and symmetric stretching modes of the surfactants to provide more information of the surfactant molecular configurations.  相似文献   

13.
This paper is an account of the experiments on grafting polyacrylamide onto organophilic montmorillonite. Cloisite 20A was reacted with vinyltrichlorosilane to replace the edge hydroxyl groups of the clay with a vinyl moiety. Since the reaction liberates HCl, it was performed in the presence of sodium hydrogencarbonate to prevent the exchange of quaternary alkyl ammonium cations with H+ ions. Only the silanol groups on the edge of the clay react with vinyltrichlorosilane. The product maintained the same basal spacing as the precursor. The radical polymerization of the product with acrylamide as a vinyl monomer leads to chemical grafting of polyacrylamide onto montmorillonite surface. The homopolymer formed during polymerization was Soxhelt extracted from the grafted organoclay. Chemical grafting of the polymer onto Cloisite 20A was confirmed by IR spectroscopy. The interlayer and surface changes of the clay in the prepared nanocomposite materials and the grafted nano-particles were studied by XRD and SEM. Intercalated nanocomposites were obtained for clay contents of 3-7% and agglomeration occurred at higher clay loadings. The nanocomposites were studied by thermogravimertic analysis (TGA) and dynamic mechanical analysis (DMTA).  相似文献   

14.
Pöppl  L.  Tóth  E.  Tóth  M.  Pászli  I.  Izvekov  V.  Gábor  M. 《Journal of Thermal Analysis and Calorimetry》1998,53(2):585-596
Cross-linked montmorillonite was prepared by reacting homoionic sodium form of bentonite (Na-M) from Istenmezeje (Hungary) with high molecular weight polyhydroxy-aluminum complex. The complex was prepared by controlled hydrolysis of alumina macrocation. The intercalated clay (Na-Al-M) was thermally treated to convert the hydroxy cations to oxide pillars. The pillared products were characterized by X-ray powder diffraction (XRD), Fourie transform infrared spectroscopy (FTIR), (thermogravimetry (TG), differential thermal analysis (DTA) and thermal analysis-mass spectrometry (TA-MS) methods. The specific surface area as well as pore size and pore structure distribution of samples were measured by nitrogen, water and carbon tetrachloride adsorption, and the heat of immersion was also determined. The pillared products were characterized by d(001) reflections of 19 Å, which is stable even at 500°C. The interaction of polymer alumina caused several changes in the obtained FTIR spectra due to the formation of different new bonds. The rate of dehydroxylation of the pillared product is very moderate, the water release occurred in different temperature ranges according to TA-MS results. Dehydration starts at interfaces and at the wall of pores, occurring nearly with uniform rate at 250-500°C. DTA curve indicates the formation of a new phase at 950°C. The obtained surface area of the pillared product by nitrogen adsorption becomes larger (208 m2 g-1) with respect to the non pillared clay, which decreases less than 10% upto 700°C. The pillared sample has a definite pore structure, the quantity of micropores (0-40 Å) decreased with increasing of macropores (>1000 Å). The obtained domestic pillared montmorillonite possesses a high degree of thermal stability and may be used as adsorbent.  相似文献   

15.
Surfaces of Wyoming SWy-2-Na-montmorillonite were modified using ultrasonic and hydrothermal methods through the intercalation and adsorption of the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Changes in the surfaces and structure were characterized using X-ray diffraction (XRD), thermal analysis (TG), and electron microscopy. The ultrasonic preparation method results in a higher surfactant concentration within the montmorillonite interlayer when compared with that from the hydrothermal method. Three different molecular environments for surfactants within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. Both XRD patterns and TEM images demonstrate that SWy-2-Na-montmorillonite contains superlayers. TEM images of organoclays prepared at high surfactant concentrations show alternate basal spacings between neighboring layers. SEM images show that modification with surfactant reduces the clay particle size and aggregation. Organoclays prepared at low surfactant concentration display curved flakes, whereas they become flat with increasing intercalated surfactant. Novel surfactant-modified montmorillonite results in the formation of new nanophases with the potential for the removal of organic impurities from aqueous media.  相似文献   

16.
A Keggin-type polyoxomolybdate[H_2biim]{Ni(biim)_3(SiMO_(12)O_(40))}[biim =1H,1'H-[2,2']biimidazolyl]has been synthesized under hydrothermal condition and characterized by XRD,temperature-dependent IR,TG,temperature-induced and magnetism-induced 2D infrared correlation spectroscopy(2D-IR COS)and UV-vis DRS in order to explore the relationship between structure and properties.Temperatureinduced 2D-IR COS spectroscopy indicates that the terminal Mo-O_(μ/υ) bonds are more sensitive than the bridging Mo=O_t,bands to temperature variation,which is in agreement with the conclusion of temperature-dependent IR.Magnetism-dependent 2D-IR COS spectroscopy reveals the stretching vibration of the Mo=O_t,occurs prior to the stretching vibration of the Mo-O_(μ/υ),which is due to the coordination environment and the valence of the Si atom.The stability of compound 1 is investigated via TG and temperature-dependent IR.In RhB degradation,compound 1 shows good photocatalytic abilities.  相似文献   

17.
The present study reports an unusual diffuse reflection Fourier transform (DRIFT) spectrum of ethane adsorbed by gallium oxide. One of the stretching C-H bands in this spectrum with a maximum at 2753 cm(-1) is more than by 100 cm(-1) shifted toward lower frequencies in comparison with gaseous ethane. In addition, the relative intensity of this band is unusually high. This indicates a very strong polarizability of the corresponding chemical bonds resulting from perturbation of ethane by the low coordinated Ga(3+) cations. The assignment of this band to the very strongly perturbed initially fully symmetric nu(1) C-H stretching vibration is confirmed by a DFT modeling of ethane adsorption by the simplest Ga(2)O(3) cluster. The obtained results also indicate heterolytic dissociative adsorption and dehydrogenation of ethane by Ga(3+) Lewis sites at elevated temperature. This is evidenced by the appearance of new IR bands from zinc alkyl fragments and acidic protons followed by decomposition of resulting zinc ethyl species. In parallel, the most intense IR band at lower frequency from the most strongly polarized C-H chemical bond decreased in intensity. The obtained results indicate that these vibrations are involved in subsequent heterolytic dissociative adsorption. The obtained results demonstrate that, similar to the shifts of C-H stretching vibrations to the low-frequency, intensities of IR C-H stretching bands can be also used as an index of chemical activation of adsorbed paraffins via their polarization by the low-coordinated cations.  相似文献   

18.
In this study, Zr-pillared montmorillonite clays (Zr-PILCs) were synthesized using two different precursor materials: raw montmorillonite (CM) and sodium ion-saturated montmorillonite (Na-CM) at different Zr/clay ratios (2.5, 5 and 10 mmol/g). To study the effect of Zr concentration and clay pre-treatment with NaCl on pillaring, the modified clay samples were characterized in detail using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy (STEM-EDX). The XRD analysis showed the increase of basal spacing of Zr-PILCs prepared from both precursor materials: from 1.26 to 1.74 nm in the case of CM, and from 1.13 to 1.93 nm for Na-CM. Results from FT-IR revealed new bands ascribed to Zr-O bonds in the range of 400–500 cm?1 in Zr-pillared samples obtained from Na-CM at Zr/clay ratios of 2.5 and 5 mmol/g. The distribution and nature of Zr species in between the silicate layers were studied using STEM-EDX and HAADF imaging. They were found to be separated by a distance of 1.5–3 nm and their thickness lies in the range of 1–2 nm. Pillared clays prepared from pre-treatment with NaCl were more thermally stable at higher temperatures.  相似文献   

19.
The Raman and IR spectra of NH3(CH2)5NH3SnCl6 have been measured at ambient temperature. It is shown that the cations in the compound assume a symmetry lower than C2v. Combination bands observed in the 2100-1800 cm(-1) region in the IR spectrum of NH3(CH2)5NH3SnCl6 indicate that the compound contains the C-NH3 grouping, the bands are discussed and their assignment are suggested. No evidence of existence of hydrogen bonding is found from the infrared spectrum in the region of 2800-3200 cm(-1); anions and cations are found not connected by hydrogen bonding and are therfore isolated. The Raman spectrum of anions can be interpreted in terms of disordered groups, not clearly showing the predicted splitting of bands.  相似文献   

20.
We describe the preparation of the first crystalline compounds based on arylboronate ligands PhB(OH)(3)(-) coordinated to metal cations: [Ca(PhB(OH)(3))(2)], [Sr(PhB(OH)(3))(2)]·H(2)O, and [Ba(PhB(OH)(3))(2)]. The calcium and strontium structures were solved using powder and single-crystal X-ray diffraction, respectively. In both cases, the structures are composed of chains of cations connected through phenylboronate ligands, which interact one with each other to form a 2D lamellar structure. The temperature and pH conditions necessary for the formation of phase-pure compounds were investigated: changes in temperature were found to mainly affect the morphology of the crystallites, whereas strong variations in pH were found to affect the formation of pure phases. All three compounds were characterized using a wide range of analytical techniques (TGA, IR, Raman, XRD, and high resolution (1)H, (11)B, and (13)C solid-state NMR), and the different coordination modes of phenylboronate ligands were analyzed. Two different kinds of hydroxyl groups were identified in the structures: those involved in hydrogen bonds, and those that are effectively "free" and not involved in hydrogen bonds of any significant strength. To position precisely the OH protons within the structures, an NMR-crystallography approach was used: the comparison of experimental and calculated NMR parameters (determined using the Gauge Including Projector Augmented Wave method, GIPAW) allowed the most accurate positions to be identified. In the case of the calcium compound, it was found that it is the (43)Ca NMR data that are critical to help identify the best model of the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号