首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
We investigate phase-plane analysis of general relativistic orbits in a gravitational field of the Reissner–Nordstr?m-type regular black hole spacetime. We employ phase-plane analysis to obtain different phase-plane diagrams of the test particle orbits by varying charge q and dimensionless parameter β, where β contains angular momentum of the test particle. We compute numerical values of radii for the innermost stable orbits and corresponding values of energy required to place the test particle in orbits. Later on, we employ similar analysis on an Ayón–Beato–García(ABG) regular black hole and a comparison regarding key results is also included.  相似文献   

2.
As an example of a dynamical cosmological black hole, a spacetime that describes an expanding black hole in the asymptotic background of the Einstein-de Sitter universe is constructed. The black hole is primordial in the sense that it forms ab initio with the big bang singularity and its expanding event horizon is represented by a conformal Killing horizon. The metric representing the black hole spacetime is obtained by applying a time dependent conformal transformation on the Schwarzschild metric, such that the result is an exact solution with a matter content described by a two-fluid source. Physical quantities such as the surface gravity and other effects like perihelion precession, light bending and circular orbits are studied in this spacetime and compared to their counterparts in the gravitational field of the isolated Schwarzschild black hole. No changes in the structure of null geodesics are recorded, but significant differences are obtained for timelike geodesics, particularly an increase in the perihelion precession and the non-existence of circular timelike orbits. The solution is expressed in the Newman-Penrose formalism.  相似文献   

3.
We investigate periodic orbits and zoom-whirl behaviors around a Kerr Sen black hole with a rational number q in terms of three integers(z,w,v),from which one can immediately read off the number of leaves(or zooms),the ordering of the leaves,and the number of whirls.The characteristic of zoom-whirl periodic orbits is the precession of multi-leaf orbits in the strong-field regime.This feature is analogous to the counterpart in the Kerr space-time.Finally,we analyze the impact of the charge parameter b on the zoom-whirl periodic orbits.Compared to the periodic orbits around the Kerr black hole,it is found that typically lower energies are required for the same orbits in the Kerr Sen black hole.  相似文献   

4.
Dynamical properties are studied for escaping particles, injected through a hole in an oval billiard. The dynamics is considered for both static and periodically moving boundaries. For the static boundary, two different decays for the recurrence time distribution were observed after exponential decay for short times: A changeover to: (i) power law or; (ii) stretched exponential. Both slower decays are due to sticky orbits trapped near KAM islands, with the stretched exponential apparently associated with a single group of large islands. For time dependent case, survival probability leads to the conclusion that sticky orbits are less evident compared with the static case.  相似文献   

5.
Two circular photon orbits are known to exist in the equatorial plane of the Kerr black hole. In this paper, we investigate so-called spherical photon orbits—orbits with constant coordinate radii that are not confined to the equatorial plane. A one-parameter class of solutions is found, which includes the circular orbits as special cases. The properties of these spherical orbits are then analyzed, with the aim of classifying them by qualitative differences in their behavior. Finally, representative orbits from each class are plotted out, including a zero-angular momentum photon orbit and one with non-fixed azimuthal direction.  相似文献   

6.
The regular Hayward model describes a non-singular black hole space-time. By analyzing the behaviors of effective potential and solving the equation of orbital motion, we investigate the time-like and null geodesics in the regular Hayward black hole space-time. Through detailed analyses of corresponding effective potentials for massive particles and photons, all possible orbits are numerically simulated. The results show that there may exist four orbital types in the time-like geodesics structure: planetary orbits, circular orbits, escape orbits and absorbing orbits. In addition, when \(\ell \), a convenient encoding of the central energy density \(3/8\pi \ell ^{2}\), is 0.6M, and b is 3.9512M as a specific value of angular momentum, escape orbits exist only under \(b>3.9512M\). The precession direction is also associated with values of b. With \(b=3.70M\) the bound orbits shift clockwise but counter-clockwise with \(b=5.00M\) in the regular Hayward black hole space-time. We also find that the structure of null geodesics is simpler than that of time-like geodesics. There only exist three kinds of orbits (unstable circle orbits, escape orbits and absorbing orbits).  相似文献   

7.
Gravitational radiation of binary systems can be studied by using the adiabatic approximation in General Relativity. In this approach a small astrophysical object follows a trajectory consisting of a chained series of bounded geodesics (orbits) in the outer region of a Kerr Black Hole, representing the space time created by a bigger object. In our paper, we study the entire class of orbits, both of constant radius (spherical orbits), as well as non-null eccentricity orbits, showing a number of properties on the physical parameters and trajectories. The main result is the determination of the geometrical locus of all the orbits in the space of physical parameters in Kerr space–time. This becomes a powerful tool to know if different orbits can be connected by a continuous change of their physical parameters. A discussion on the influence of different values of the angular momentum of the hole is given. Main results have been obtained by analytical methods.  相似文献   

8.
We analyze the accretion of charged matter onto a rotating black hole immersed in an aligned dipolar magnetic field. We specialize to motion in the equatorial plane and calculate the ‘Keplerian’ angular momentum distribution, the marginally stable and marginally bound orbits, and the efficiency of mass-to-energy conversion as functions of the angular momentum of the black hole and of the product of the dipole moment and the charge of the infalling matter. Although the detailed results are quite different from those previously obtained in the case of an uniform magnetic field, the astrophysically relevant results are very similar; when hydrodynamical accretion is considered, these effects of the magnetic field are always very small. But for test particles the efficiency can be significantly increased for limited ranges of the parameters.  相似文献   

9.
The study of charged test particle dynamics in the combined black hole gravitational field and magnetic field around it could provide important theoretical insight into astrophysical processes around such compact object. We have explored the orbital and epicyclic motion of charged test particles in the background of non-rotating Einstein-Æther black holes in the presence of external uniform magnetic field. We numerically integrate the equations of motion and analyze the trajectories of the charged test particles. We examined the stability of circular orbits using effective potential technique and study the characteristics of innermost stable circular orbits. We analyze the key features of quasi-harmonic oscillations of charged test particles nearby the stable circular orbits in an equatorial plane of the black hole, and investigate the radial profiles of the frequencies of latitudinal as well as radial harmonic oscillations in dependence on the strength of magnetic field, mass of the black hole and dimensionless coupling constants of the theory. We demonstrate that the magnetic field and dimensionless parameters of the theory have strong influence on charged particle motion around Einstein-Æther black holes.  相似文献   

10.
We study the effect of an external magnetic field on the stability of circular motion around a five dimensional Myers–Perry metric. Using the Hamilton–Jacobi formalism we derive the effective potential for the radial motion of charged particles around a five dimensional rotating black hole in a uniform magnetic field. We show that there are stable circular orbits around a five dimensional rotating black hole immersed in a uniform magnetic field.  相似文献   

11.
The complete classification of the nilpotent orbits of SO(2,2)2 in the representation (2,2,2,2) , achieved in 14 , is applied to the study of multi‐center, asymptotically flat, extremal black hole solutions to the STU model. These real orbits provide an intrinsic characterization of regular single‐center solutions, which is invariant with respect to the action of the global symmetry group SO(4,4), underlying the stationary solutions of the model, and provide stringent regularity constraints on multi‐centered solutions. The known almost‐BPS and composite non‐BPS solutions are revisited in this setting. We systematically provide, for the relevant SO(2,2)2‐nilpotent orbits of the global Noether charge matrix, regular representatives thereof. This analysis unveils a composition law of the orbits according to which those containing regular multi‐centered solutions can be obtained as combinations of specific single‐center orbits defining the constituent black holes. Some of the SO(2,2)2‐orbits of the total Noether charge matrix are characterized as “intrinsically singular” in that they cannot contain any regular solution.  相似文献   

12.
We study the positions of orbits around a Kerr black hole with respect to its ergosphere. Ther– motions of zero-energy (E=0) null geodesies are inside truncated circular sectors, whose outer corners are on the static limit. Timelike geodesies with the same constants of motion are restricted inside a smaller area. For certain parameter values there are also orbits inside the inner horizon not reaching the center. Then we study the various types of orbits on the plane of symmetry for all the values of the angular momentum of the black hole 0aM, and of the angular momentum of the photons, or particles,L, and for all the values of the energyE. In particular we find the possible positions of the turning points with respect to the ergosphere. A restriction imposed by physical considerations is that the coordinate time increases when the proper time increases. This allows us to distinguish between positive and negative energy orbits. All negative energy orbits enter the horizon of the black hole.  相似文献   

13.
In this paper the generalized equations for spinning space are investigated and the constants of motion are derived in terms of the solutions of these equations. We study the geodesic motion of the pseudo-classical spinning particles in the spacetime produced by an idealized cosmic string and the non-extreme stationary axisymmetric black hole spacetime. The bound state orbits in a plane are discussed. We also show, for a conical spacetime and the Kerr spacetime, that the geodesic motion of spinning particles is different.  相似文献   

14.
In this paper the generalized equations for spinning space are investigated and the constants of motion are derived in terms of the solutions of these equations. We study the geodesic motion of the pseudo-classical spinning particles in the spacetime produced by an idealized cosmic string and the non-extreme stationary axisymmetric black hole spacetime. The bound state orbits in a plane are discussed. We also show, for a conical spacetime and the Kerr spacetime, that the geodesic motion of spinning particles is different.  相似文献   

15.
We show that the test body stable circular orbits around the spherically symmetric black hole (BH) configuration can form disjoint structures in presence of a minimally coupled nonlinear scalar field. General conditions for the disjoint structures to exist are formulated. To present examples we construct a two-parametric family of exact solutions to Einstein equations with scalar fields for appropriate self-interaction potentials. For different values of the family parameters the solutions describe either BH or naked singularity (NS). We found numerically regions of the parameters when there exist two disjoint regions of stable circular orbits; such nonconnected structures indeed can exist in case of both BH and NS solutions.  相似文献   

16.
An important issue in the dynamics of neutron star binaries is whether tidal interaction can cause the individual stars to collapse into black holes during inspiral. To understand this issue better, we study the dynamics of a cluster of collisionless particles orbiting a non-rotating black hole, which is part of a widely separated circular binary. The companion body's electric- and magnetic-type tidal fields distort the black hole and perturb the cluster, eventually causing the cluster to collapse into the hole as the companion spirals in under the influence of gravitational radiation reaction. We find that magnetic-type tidal forces do not significantly influence the evolution of the cluster as a whole. However, individual orbits can be strongly affected by these forces. For example, some orbits are destabilized due to the addition of magnetic-type tidal forces. We find that the most stable orbits are close to the companion's orbital plane and retrograde with respect to the companion's orbit.  相似文献   

17.
李娟  樊军辉  袁聿海 《中国物理》2007,16(3):876-880
Observations of PKS 1510-089 indicate the existence of a deep flux minimum with a timescale of \sim 35 min and an interval of about 336±14 d. A binary black hole system is proposed to be at the nucleus of this object. The secondary black hole orbits around the primary black hole. The minimum is caused by the periodic eclipse of the primary black hole by the secondary black hole. Based on the observations of PKS 1510-089, we estimate the parameters of the binary black hole system. The masses for the primary and secondary black holes are 1. 37×109M_{\odot} (M_{\odot} is the solar mass) and 1. 37 \times 107M_{\odot} , and the major axis for this pair being about 0.1 parsec(pc).  相似文献   

18.
The charged particle orbits in electromagnetic fields on Kerr background as viewed from a locally non-rotating frame do not exhibit non-gyrating bound orbits, which was an essential feature in the earlier study of Prasanna and Vishveshwara, thus showing the non gyration to be due to the effect of dragging of inertial frames produced by the rotating black hole.  相似文献   

19.
We study the motion of bound null geodesics with fixed coordinate radius around a five-dimensional rotating black hole. These spherical photon orbits are not confined to a plane, and can exhibit interesting quasiperiodic behaviour. We provide necessary conditions for the existence of these orbits, and explicitly compute the radii of circular orbits in the equatorial and polar planes. Finally, we plot representative examples of some of the types of possible orbits, commenting on their qualitative features.  相似文献   

20.
The motion of a stochastic test particle in the field of a Kerr black hole is discussed in the approximation of Brownian interaction. The probability distribution of the position of orbits with respect to the latitudinal angle is found, and the bifurcation values of their parameters are established. The fluctuational instability of the orbits characteristic of the critical regimes of the motion is investigated, and the properties of some statistical characteristics of the system are determined.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 77–82, April, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号