首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the detection of nitroaromatic and nitramine explosives from a PTFE wipe has been developed using thermal desorption andgas chromatography with electron-capture detection (TD-GC-ECD). For method development a standard mixture containing eight nitroaromatic and two nitramine (HMX and RDX) explosive compounds was spiked onto a PTFE wipe. Explosives were desorbed from the wipe in a commercial thermal desorption system and trapped onto a cooled injection system, which was incorporated into the injection port of the GC. A dual column, dual ECD configuration was adopted to enable simultaneous confirmation analysis of the explosives desorbed. For the desorption of 50 ng of each explosive, desorption efficiencies ranged between 80.0 and 117%, for both columns. Linearity over the range 2.5-50 ng was demonstrated for each explosive on both columns with r2 values ranging from 0.979 to 0.991 and limits of detection less than 4 ng. Desorption of HMX from a PTFE wipe has also been demonstrated for the first time, albeit at relatively high loadings (100 ng).  相似文献   

2.
The application of solvent microextraction to the analysis of nitroaromatic explosives is presented. Extraction of 11 nitroaromatics was achieved by suspending 1 microl of organic solvent to the tip of a microsyringe in a stirred aqueous solution. Parameters such as extraction solvent, stirring rate, salt concentration and sampling time were studied and optimized. The limits of detection using bench-top quadrupole mass spectrometry and short extraction times (15 min) were found to be between 0.08 and 1.3 microg/l and the relative standard deviations ranged between 4.3 and 9.8%. Although precision and accuracy of quantification of the method are still needed, solvent microextraction proved to be a fast, simple and inexpensive tool for preconcentration and matrix isolation of nitroaromatics on a microscale.  相似文献   

3.
Highly luminescent micrometre-sized fine particles of a Zn(II) metal-organic framework (MOF) of a new π-electron rich tricarboxylate dispersed in ethanol is demonstrated as a selective sensory material for the detection of nitroaromatic explosives via a fluorescence quenching mechanism.  相似文献   

4.
The first nanoscale luminescent metal-organic framework has been realized for the straightforward and highly sensitive sensing of nitroaromatic explosives in enthanol solution.  相似文献   

5.
3D nanographene 1, with three HBC units arraying in the 3D triptycene scaffold, displayed strong intrinsic fluorescence properties and could be used as a detector for nitroaromatic explosives such as TNP with quenching efficiency Ksv of 1.8 × 104 M−1 and sensitivity of 2.4 ng/mm2, respectively.  相似文献   

6.
Molecularly imprinted sorbents were synthesized and used as selective extraction sorbents for the analysis of nitroaromatic explosives. Their synthesis by radical polymerization using organic monomers and by sol–gel approach using organosilanes was considered to develop a selective sorbent. The sol–gel approach with phenyltrimethoxysilane (PTMS) as monomer and 2,4-dinitrotoluene (2,4-DNT) as template gave the most promising results. An optimized procedure adapted to the selective treatment of aqueous samples was then developed and applied to various target explosives. For the first time four nitroaromatic compounds were retained on the molecularly imprinted silica (MIS) with extraction recoveries between 29% and 81%, while only low recoveries were obtained on the non-imprinted sorbent, thus highlighting the high degree of selectivity. The MIS was then used for the clean-up of a sample containing motor oil spiked with 2,4-DNT and 2,4,6-trinitrotoluene (2,4,6-TNT). The results were compared with those obtained using a conventional sorbent (Oasis HLB). The cleanest chromatogram obtained using the MIS emphasized the high potential of the MIS as selective sorbent.  相似文献   

7.
A microporous luminescent metal-organic framework [Zn_4L_2(H_2O)_2].(H_2O)_m(DMA)_n(1)(H_4L=5,5'-((1H-pyrazole-3,5-dicarbonyl)bis(azanediyl))diisophthalic acid, DMA=N,N-dimethylacetamide) was synthesized and characterized by infrared radiation(IR), thermogravimetric analyses(TGA), powder X-ray diffraction spectra(PXRD) and X-ray diffraction. Complex 1has a three dimensional(3D) framework, which can be simplified as 5,5,5,5-c net with the Schlfi symbol of {43.64.83}{44.65.8}{45.65}2. This luminescent metal-organic framework(MOF) shows selectively sensitive to nitrobenzene and series of nitroaromatic explosives such as 4-nitrotoluene, 1,4-dinitrobenzene, 1,3-dinitrobenzene and 2,4-dinitrotoluene, and exhibits well recyclability. So complex 1 could be used to detect nitroaromatic explosives as a selective sensing material.  相似文献   

8.
Acetonitrile vapor and air are useful reagents for the selective detection of nitroaromatic compounds using atmospheric pressure ion/molecule reactions. Reagent ions CH2CN- and CN- generated from acetonitrile, and O-*, OH- and OOH- produced from the oxygen in air, react with vapor-phase and condensed-phase nitroaromatics in the course of atmospheric pressure chemical ionization (APCI) and desorption atmospheric pressure chemical ionization (DAPCI), respectively. The homogeneous and the heterogeneous phase reactions both lead to the formation of the same anionic adducts. These adducts have characteristic fragmentation patterns upon collisional activation, which makes these two reagents valuable for the selective detection of particular nitroaromatics, including explosives present as components of complex mixtures. Complementary information is available from the two reagents because their different chemistry facilitates analyte identification. DAPCI is demonstrated to be a useful ambient detection method for nitroaromatic explosives absorbed on surfaces.  相似文献   

9.
10.
A sensitive electrochemical sensor has been fabricated to detect ultratrace nitroaromatic explosives using ordered mesoporus carbon (OMC). OMC was synthesized and characterized by scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption measurements. Glassy carbon electrodes functionalized with OMC show high sensitivity of 62.7 μA cm−2 per ppb towards 2,4,6-trinitrotoluene (TNT). By comparison with other materials such as carbon nanotubes and ordered mesoporous silica, it is found that the high performance of OMC toward sensing TNT is attributed to its large specific surface area and fast electron transfer capability. As low as 0.2 ppb TNT, 1 ppb 2,4-dinitrotoluene and 1 ppb 1,3-dinitrobenzene can be detected on OMC based electrodes. This work renders new opportunities to detect ultratrace explosives for applications of environment protections and home securities against chemical warfare agents.  相似文献   

11.
The contamination of soil by nitroaromatic and nitramine explosives is widespread during the manufacture, testing and disposal of explosives and ammunitions. The analysis for the presence of trace explosive contaminants in soil becomes important in the light of their effect on the growth of different varieties of plants and crops. 2,4,6-Trinitrotoluene (TNT), cyclotrimethylene trinitramine (Research Department explosive, RDX) and cyclotetramethylene tetranitramine (high melting point explosive, HMX), other related explosive compounds and their by-products must be monitored in soil and surrounding waterways since these are mutagenic, toxic and persistent pollutants that can leach from the contaminated soil to accumulate in the food chain. In this study, a voltammetric method has been developed for the determination of explosive such as RDX, HMX and TNT. The electrochemical redox behavior of RDX, HMX and TNT was studied through cyclic voltammetry and quantitative determination was carried out by using square wave voltammetry technique. Calibration curves were drawn and were linear in the range of 63-129 ppm for RDX with a detection limit of 10 ppm, 49-182 ppm for HMX with a detection limit of 1 ppm and 38-139 ppm for TNT with a detection limit of 1 ppm. This method was applied to determine the contaminations in several soil samples that yielded a relative error of 1% in the concentrations.  相似文献   

12.
Walsh ME 《Talanta》2001,54(3):427-438
Hazardous waste site characterization, forensic investigations, and land mine detection are scenarios where soils may be collected and analyzed for traces of nitroaromatic, nitramine, and nitrate ester explosives. These thermally labile analytes are traditionally determined by high-performance liquid chromatography (HPLC); however, commercially available deactivated injection port liners and wide-bore capillary columns have made routine analysis by gas chromatography (GC) possible. The electron-withdrawing nitro group common to each of these explosives makes the electron capture detector (ECD) suitable for determination of low concentrations of explosives in soil, water, and air. GC-ECD and HPLC-UV concentration estimates of explosives residues in field-contaminated soils from hazardous waste sites were compared, and correlation (r>0.97) was excellent between the two methods of analysis for each of the compounds most frequently detected: 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (1,3-DNB), 1,3,5-trinitrobenzene (TNB), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The analytes were extracted from soils with acetonitrile by 18 h of sonication in a cooled ultrasonic bath. Two soil-to-solvent ratios were evaluated: 2.00 g:10.00 ml and 25.0 g:50.0 ml. GC-ECD method detection limits were similar for the two soil-to-solvent ratios and were about 1 mug kg(-1) for the di- and trinitroaromatics, about 10 mug kg(-1) for the mono-nitroaromatics, 3 mug kg(-1) for RDX, 25 mug kg(-1) for HMX, and between 10 and 40 mug kg(-1) for the nitrate esters (nitroglycerine [NG] and pentaerythritol tetranitrate [PETN]). Spike recovery studies revealed artifacts introduced by the spiking procedure. Recoveries were low in some soils if the amount of soil spiked was large (25.0 g) compared to the volume of spike solution added (1.00 ml). Recoveries were close to 100% when 2.00-g soil samples were spiked with 1.00 ml of solution. Analytes most frequently found in soils collected near buried land mines were the microbial transformation products of TNT (2-amino-4,6-dinitrotoluene [2-Am-DNT] and 4-amino-2,6-dinitrotoluene [4-Am-DNT]), manufacturing impurities of TNT (2,4-DNT, 2,6-DNT, and 1,3-DNB), and TNT. The microbial reduction products of the isomers of DNT and of 1,3-DNB were also detected, but the ECD response to these compounds is poor.  相似文献   

13.
The synthesis, spectroscopic characterization, and fluorescence quenching efficiency of polymers and copolymers containing tetraphenylsilole or tetraphenylgermole with Si-Si, Ge-Ge, and Si-Ge backbones are reported. Poly(tetraphenyl)germole, 2, was synthesized from the reduction of dichloro(tetraphenyl)germole with 2 equivs of Li. Silole-germole alternating copolymer 3 was synthesized by coupling dilithium salts of tetraphenylsilole dianion with dichloro(tetraphenyl)germole. Other tetraphenylmetallole-silane copolymers, 4-12, were synthesized through the Wurtz-type coupling of the dilithium salts of the tetraphenylmetallole dianion and corresponding dichloro(dialkyl)silanes. The molecular weights (M(w)) of these metallole-silane copolymers are in the range of 4000 approximately 6000. Detection of nitroaromatic molecules, such as nitrobenzene (NB), 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and picric acid (PA), has been explored. A linear Stern-Volmer relationship was observed for the first three analytes, but not for picric acid. Fluorescence spectra of polymetalloles or metallole-silane copolymers obtained in either toluene solutions or thin polymer films displayed no shift in the maximum of the emission wavelength. This suggests that the polymetalloles or metallole-silanes exhibit neither pi-stacking of polymer chains nor excimer formation. Fluorescence lifetimes of polymetalloles and metallole-silanes were measured both in the presence and absence of TNT, and tau(o)/tau is invariant. This requires that photoluminescence quenching occurs by a static mechanism.  相似文献   

14.
The facile and sensitive strategies for detections of nitroaromatic explosives are highly desirable in many challenging environments, especially for homeland security against terrorism. Here, we inkjet printed polyethylenimine (PEI)-coated Ce, Tb co-doped NaGdF4 nanorods (NaGdF4:Ce/Tb NRs) onto common filter paper to construct test paper for visual and instant detections of a typical explosive 2,4,6-trinitrophenol (TNP). Polyethylenimine molecules not only facilitate the formation of uniform NaGdF4 nanorods but also provide specific recognized sites for TNP by the acid–base pairing interaction. The resultant TNP bound at the surface of PEI-coated NaGdF4:Ce/Tb NRs can strongly quench the phosphorescence with a remarkably high quenching constant by the charge transfer mechanism from NaGdF4:Ce/Tb NRs to TNP. By printing of the probe on a piece of filter paper, trace amounts of TNP can be visually detected by the appearance of a dark color against a bright green background under a UV lamp. This test paper can detect TNP as low as 0.45 ng mm−2 by the naked eye, which provides a potential application in the rapid, on-line detections of explosives.  相似文献   

15.
Negative ion atmospheric pressure ionization mass spectrometry has been used to investigate the gas phase atmospheric pressure anion chemistry of N2O2H and . N2O2H has been shown to be a stronger base than . Specific types of reaction (e.g. proton abstraction, and dehydration) have been identified for each of these anions. Although the analytical significance of these reactions has not yet been demonstrated, certain compounds such as alcohols which do not readily attach electrons directly can easily be detected by observing a specific anion reaction product. The technique appears to provide an additional dimension to established gas chromatographic—mass spectrometric analyses.  相似文献   

16.
Summary Improvements in selectivity and sensitivity in the analysis of common explosives, like nitrate esters, nitramines and nitroaromatic compounds can be achieved by post-column derivatisation in a two step reaction detector. The first step in derivatisation is the photolysis of the analytes with UV at 254 nm. The photo reactor consists of a crocheted 20 m Tefzel capillary, which is coiled around a low pressure mercury lamp. In second step the nitrite ion generated is subsequently detected by a colourimetric reaction. The azo dye formed can be selectively detected at 540 nm.Addition of alkali after chromatographic separation to prevent oxidation of initially formed nitrite to nitrate during photolysis leads to a complex multistage arrangement. However, the contribution to peak broadening by the reactor is negligible and it is possible to detect 25–50 ppb of nitramines and 30–100 ppb of nitrate esters. Another advantage of the method is the selective detection of nitro compounds, even in complex matrices.The trace analysis of explosives is of growing interest in forensic science as well as in environmental analysis. It has been shown [1] that explosives can easily be extracted from soil and debris by the use of supercritical carbon dioxide. The separation and determination of explosives by gas chromatography is hindered by their thermal instability. In HPLC only the nitro aromatic explosives can be detected with sufficient sensitivity. Other types of explosives like the esters of nitric acid or nitramines do not absorb sufficiently in the UV region for sensitive detection. It has been shown [2] that explosives are liable to photochemical decomposition in the UV region, resulting in nitrate and nitrite, which have been detected after separation by ion-pair chromatography with electrochemical detection. A more sensitive and selective detection of nitrite has been possible in flow injection analysis [3]. Here a modified Griess reaction has been used. In a first step nitrite ions are used to form the diazonium salt with sulfanilamide which is coupled in a second step with N-[naphthyl-(1)]-ethylene diamine (NED) to form a redviolet azo dye with an absorption maximum at 540 nm. The advantage of this method is selective detection in the visible region, where hardly any other organic components are detected, which might be present in a crude environmental sample.In this paper the transfer of the Griess reaction to post-column derivatisation in RP chromatography of explosives will be described, and the optimisation of trace analysis of these solutes will be discussed.  相似文献   

17.
The ability to separate nitroaromatic and nitramine explosives in seawater sample matrices is demonstrated using both MEKC and CEC. While several capillary-based separations exist for explosives, none address direct sampling from seawater, a sample matrix of particular interest in the detection of undersea mines. Direct comparisons are made between MEKC and CEC in terms of sensitivity and separation efficiency for the analysis of 14 explosives and explosive degradation products in seawater and diluted seawater. The use of high-salt stacking with MEKC results, on average, in a three-fold increase in the number of theoretical plates, and nearly double resolution for samples prepared in 25% seawater. By taking advantage of long injection times in conjunction with stacking, detection limits down to sub mg/L levels are attainable; however, resolution is sacrificed. CEC of explosive mixtures using sol-gels prepared from methyltrimethoxysilane does not perform as well as MEKC in terms of resolving power, but does permit extended injection times for concentrating analyte onto the head of the separation column with little or no subsequent loss in resolution. Electrokinetic injections of 8 min at high voltage allow for detection limits of explosives below 100 microg/L.  相似文献   

18.
The electrochemical behaviour of some nitroaromatic explosives (2,4,6-trinitrotoluene, TNT; 2,6-dinitrotoluene, 2,6-DNT; 2-nitrotoluene, 2-NT; 2-amino-4,6-dinitrotoluene, 2-A-4,6-DNT; 3,5-dinitroaniline, 3,5-DNA; and nitrobenzene, NB) at electrochemically activated carbon-fibre microelectrodes is reported. Electrochemical activation of such electrode material by repeated square-wave (SW) voltammetric scans between 0.0 and +2.6 V versus Ag/AgCl, produced a dramatic increase in the cathodic response from these compounds. This is attributed to the increase of the carbon-fibre surface area, because of its fracture, and the appearance of deep fissures along the main fibre axis into which the nitroaromatic compounds penetrate. Based on the important contribution of adsorption and/or thin layer electrolysis to the total voltammetric response, a SW voltammetric method for rapid detection of nitroaromatic explosives was developed. No interference was found from compounds such as hydrazine, phenolic compounds, carbamates, triazines or surfactants. The limits of detection obtained are approximately 0.03 g mL–1 for all the nitroaromatic compounds tested. The method was applied for the determination of TNT in water and soil spiked samples; recoveries were higher than 95% in all cases.  相似文献   

19.
We report the development and tests of several systems for the simultaneous determination of 18 energetic compounds and related congeners in untreated water samples. In these systems a Restricted Access Material trap or liquid-chromatography precolumn (with a C(18) or porous graphitic carbon, PGC, stationary phase) followed by a PGC analytical column are used for sample clean-up, enrichment and separation of the trace level analytes, which are then analyzed by mass spectrometry (MS). The relative merits of two MS ionization interfaces (atmospheric pressure chemical ionization, APCI, and atmospheric pressure photoionization, APPI) were also compared for the MS identification and quantification of these analytes. APCI was found to be superior in cases where both alternatives are applicable. A major drawback when applying APPI is that no signal is obtained for the cyclic nitramines and nitrate esters. Using APCI, a wide spectrum of unstable compounds can be determined in a single analysis, and the feasibility of using large volume samples (up to 100 mL) in combination with the sensitivity of the MS detection system provide method detection limits ranging from 2.5 pg/mL (for 2,4-dinitrotoluene and 2,6-diamino-6-nitrotoluene) to 563 pg/mL (for pentaerythritol tetranitrate, PETN), with repeatability ranging from 2 to 7%. Other chemometric parameters such as robustness, selectivity, repeatability, and intermediate precision were also evaluated in the validation of the extraction methods for use in water analysis. Tests with untreated groundwater and drinking water samples, spiked with 20 ng of the analytes, yielded results similar to those obtained with high purity water samples.  相似文献   

20.
Two molecularly imprinted silicas (MISs) were synthesized and used as selective sorbents for the extraction of nitroaromatic explosives in post-blast samples. The synthesis of the MISs was carried out with phenyltrimethoxysilane as monomer, 2,4-dinitrotoluene (2,4-DNT) as template and triethoxysilane as cross-linker by a sol–gel approach in two molar ratios: 1/4/20 and 1/4/30 (template/monomer/cross-linker). Non-imprinted silica sorbents were also prepared following the same procedures without introducing the template. An optimized procedure dedicated to the selective treatment of aqueous samples was developed for both MISs for the simultaneous extraction of the template and other nitroaromatic compounds commonly used as explosives. The capacity of the MISs was measured by the extraction of increasing amounts of 2,4-DNT in pure water and is higher than 3.2 mg/g of sorbent for each MIS. For the first time, four nitroaromatic compounds were selectively extracted and determined simultaneously with extraction recoveries higher than 79%. The potential of these sorbents was then highlighted by their use for the clean-up of post-blast samples (motor oil, post-mortem blood, calcined fragments, etc.). The results were compared to those obtained using a conventional sorbent, thus demonstrating the interest of the use of these MISs as selective sorbents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号