首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA)(2)] and [(o-TOL)(CA)(2)] have been prepared. The (13)C NMR, (1)H NMR, (1)H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H?N intermolecular hydrogen bond between 2NH(2) groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic.  相似文献   

2.
The intermolecular charge-transfer (CT) complexes formed between two poly(amidoamine) dendrimers (PAMAM) from zero (D1) and second generation (D2) as donor and iodine as sigma-acceptor have been studied spectrophotometrically in the chloroform medium. The suggested structures of the solid iodine charge-transfer complexes investigated by several techniques using elemental analysis, mid infrared spectra, and thermal analysis (TGA and DTG) of the solid CT-complexes along with the photometric titration curves for the reactions. The results indicate the formation of two CT-complexes [(D1)]-I(2) and [(D2)]-2I(2) with acceptor:donor molar ratios of 1:1 and 1:2, respectively. The kinetic parameters (non-isothermal method) for their decomposition have been evaluated by graphical methods using the equations of Horowitz-Metzger (HM) and Coats-Redfern (CR).  相似文献   

3.
The interaction of the mixed oxygen-nitrogen cyclic base, N,N'-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (DD18C6) with pi-acceptors such as picric acid (HPA) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has been studied spectrophotometrically in chloroform at 25 degrees C. The results obtained indicate the formation of 1:4 charge-transfer complexes with the general formula (DD18C6)(acceptor)4. The electronic and infrared spectra of charge-transfer complexes along with the (1)H NMR spectra were recorded and discussed. Based on the data obtained, the complexes were formulated as [(DD18C6H2)(HPA)2](PA)2 and [(DD18C6H2)(DDQ)2](DDQH)2. A general mechanism explaining the formation of the DDQ complex has been suggested.  相似文献   

4.
Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H(2)CA) have been studied in CHCl(3) and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH(2))(CA)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants (K(C)) for the complexes were shown to be dependent on the structure of the electron acceptors used.  相似文献   

5.
The reactions of the electron donor 1-methylpiperidine (1MP) with the π-acceptors 7,7,8,8-tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil = CHL) and iodine (I2) were studied spectrophotometrically in chloroform at room temperature. The electronic and infrared spectra of the formed molecular charge-transfer (CT) complexes were recorded. The obtained results showed that the stoichiometries of the reactions are not fixed and depend on the nature of the acceptor. Based on the obtained data, the formed charge-transfer complexes were formulated as [(1MP)(TCNE)2], [(1MP)(DDQ)]·H2O, [(1MP)(CHL)] and [(1MP)I]I3, while in the case of 1MP–TCNQ reaction, a short-lived CT complex is formed followed by rapid N-substitution by TCNQ forming the final reaction products 7,7,8-tricyano-8-piperidinylquinodimethane (TCPQDM). The five solids products were isolated and have been characterized by electronic spectra, infrared spectra, elemental analysis and thermal analysis.  相似文献   

6.
Dimer model compounds of polyvinylcarbazoles (1,n-di(N-carbazolyl)alkanes, when n=1-5) were synthesized to model the effects of distance and orientation between carbazole groups in polymeric systems. Charge-transfer (CT) complexes of carbazole, N-ethylcarbazole and 1,n-di(N-carbazolyl)alkanes with p-chloranil (p-CHL) have been investigated spectrophotometrically in dichloromethane. The colored products are measured spectrophotometrically at different wavelength depending on the electronic transition between donors and acceptor. The formation constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters were calculated by Van't Hoff equation. Stochiometries of the complexes formed between donors and acceptor were defined by the Job's method of the continuous variation and found in 1:1 complexation with donor and acceptor at the maximum absorption bands.  相似文献   

7.
The interaction of the interesting polynitrogen cyclic base 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN) with the sigma-acceptor iodine and pi-acceptors tetracyanoethylene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrachloro-p-benzoquinone (chloranil) have been studied spectrophotometrically and cyclic voltametrically in chloroform at 20 degrees C. Based on the obtained data, the formed charge-transfer complexes were formulated as [(TMTACN)I](+).I(3)(-), [(TMTACN)(TCNE)(5)], [(TMTACN)(TCNQ)(3)] and [(TMTACN)(chloranil)(3)] where the stoichiometry of the reactions, donor:acceptor molar ratios, were shown to equal 1:2 for iodine complex, 1:3 for chloranil and TCNQ complexes and 1:5 for TCNE complex.  相似文献   

8.
Dimer model compounds of polyvinylanthracenes (1,n-di(9-anthryl)alkanes, when n=1-5) were synthesized to model the effects of distance and orientation between anthracene groups in polymeric systems. Charge transfer (CT) complexes of anthracene, 9-methylanthracene and 1,n-di(9-anthryl)alkanes with p-chloranil (p-CHL) have been investigated spectrophotometrically in dichloromethane. The colored products are measured spectrophotometrically at different wavelength depending on the electronic transition between donors and acceptor. The formation constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters were calculated by Van't Hoff equation. Stochiometries of the complexes formed between donors and acceptor were defined by the Job's method of the continuous variation and found in 1:1 complexation with donor and acceptor at the maximum absorption bands.  相似文献   

9.
Two new zinc(II) complexes, [Zn2L2Cl4]·2[ZnL(CH3OH)Cl2] 1 and [ZnL2(NO3)2] 2, were synthesized by reacting ZnX2·nH2O (X = Cl-, NO3-) and a Schiff base ligand 2-[(4-me- thylphenylimino)methyl]-6-methoxyphenol (C15H15NO2, L) which was obtained by the condensation of o-vanillin (2-hydroxy-3-methoxybenzaldehyde) with p-toluidine. Both 1 and 2 were characterized by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, 1H-NMR spectra and thermogravimetric analysis. The Schiff base ligand and its zinc(II) complexes have been tested in vitro to evaluate their antibacterial activity against bacteria, viz., Escherichia Coli, Staphylococcus aureus and Bacillus Subtilis. The results show that these complexes have higher activity than the corresponding free Schiff base ligand against the same bacteria.  相似文献   

10.
EOM-CCSD spin-spin coupling constants across hydrogen bonds have been computed for complexes in which NH3, H2O, and FH molecules and their hydrogen-bonded dimers form bridging complexes in the amide region of formamide. The formamide one-bond N-H coupling constant [(1)J(N-H)] across N-H...X hydrogen bonds increases in absolute value upon complexation. The signs of the one-bond coupling constants (1h)J(H-X) indicate that these complexes are stabilized by traditional hydrogen bonds. The two-bond coupling constants for hydrogen bonds with N-H as the donor [(2h)J(N-X)] and the carbonyl oxygen as the acceptor [(2h)J(X-O)] increase in absolute value in the formamide/dimer relative to the corresponding formamide/monomer complex as the hydrogen bonds acquire increased proton-shared character. The largest changes in coupling constants are found for complexes of formamide with FH and (FH)2, suggesting that bridging FH monomers and dimers in particular could be useful NMR spectroscopic probes of amide hydrogen bonding.  相似文献   

11.
The synthesis, characterization and reactivity of heteroleptic rare earth metal complexes supported by the carbon-bridged bis(phenolate) ligand 2,2'-methylene-bis(6-tert-butyl-4-methyl-phenoxo) (MBMP(2-)) are described. Reaction of (C(5)H(5))(3)Ln(THF) with MBMPH(2) in a 1 : 1.5 molar ratio in THF at 50 degrees C produced the heteroleptic rare earth metal bis(phenolate) complexes (C(5)H(5))Ln(MBMP)(THF)(n) (Ln = La, n = 3 (); Ln = Yb (), Y (), n = 2) in nearly quantitative yields. The residual C(5)H(5)(-) groups in complexes to can be substituted by the bridged bis(phenolate) ligands at elevated temperature to give the neutral rare earth metal bis(phenolate) complexes, and the ionic radii have a profound effect on the structures of the final products. Complex reacted with MBMPH(2) in a 1 : 0.5 molar ratio in toluene at 80 degrees C to produce a dinuclear complex (MBMP)La(THF)(mu-MBMP)(2)La(THF)(2) () in good isolated yield; whereas complexes and reacted with MBMPH(2) under the same conditions to give (MBMP)Ln(MBMPH)(THF)(2) (Ln = Yb (), Y ()) as the final products, in which one hydroxyl group of the phenol is coordinated to the rare earth metal in a neutral fashion. The reactivity of complexes and with some metal alkyls was explored. Reaction of complex with 1 equiv. of AlEt(3) in toluene at room temperature afforded unexpected ligand redistributed products, and a discrete ion pair ytterbium complex [(MBMP)Yb(THF)(2)(DME)][(MBMP)(2)Yb(THF)(2)] () was isolated in moderate yield. Furthermore, reaction of complex with 1 equiv. of ZnEt(2) in toluene gave a ligand redistributed complex [(mu-MBMP)Zn(THF)](2) () in reasonable isolated yield. Similar reaction of complex with ZnEt(2) also afforded complex ; whereas the reaction of complex with 1 equiv. of n-BuLi in THF afforded the heterodimetallic complex [(THF)Yb(MBMP)(2)Li(THF)(2)] (). All of these complexes were well characterized by elemental analyses, IR spectra, and single-crystal structure determination, in the cases of complexes , and -.  相似文献   

12.
The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (KCT), molar extinction coefficient (?CT), standard free energy (ΔGo), oscillator strength (f), transition dipole moment (μEN), resonance energy (RN) and ionization potential (ID). The results indicate that the formation constant (KCT) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used.  相似文献   

13.
The synthesis of perfluoroalkyl-substituted "pincer"-type PCP ligands, 1,3-C6H4(CH2P(Rf)2)2 (Rf = CF3, C2F5), and platinum coordination studies (Rf = CF3) are reported. 1,3-C6H4(CH2P(CF3)2)2 (CF3PCPH) reacts at ambient temperatures with (cod)Pt(Me)Cl (cod = 1,5-cyclooctadiene) and (cod)PtMe2 to afford unmetalated PCPH-bridged products [(CF3PCPH)Pt(Me)Cl]x and cis-[(CF3PCPH)PtMe2]2, respectively. cis-[(CF3PCPH)PtMe2]2 is soluble and has been spectroscopically and crystallographically characterized. Thermolysis of these compounds results in the loss of methane and the formation of metalated complexes (CF3PCP)PtCl and (CF3PCP)PtMe. Treatment of (CF3PCP)PtCl with MeMgBr provides an alternative route to (CF3PCP)PtMe. The carbonyl cation (CF3PCP)Pt(CO)+SbF6- (nu(CO) = 2143 cm(-1)) was readily prepared by chloride abstraction with AgSbF6 under 1 atm CO. nu(CO) data indicates that RfPCP ligands are electronically analogous to trans acceptor phosphine complexes such as trans-((C2F5)2PMe)2Pt(Me)(CO)+ (nu(CO) = 2149 cm-1).  相似文献   

14.
Mononuclear Ni(II), Co(II), and Zn(II) complexes of the bppppa (N,N-bis[(6-phenyl-2-pyridyl)methyl]-N-[(6-pivaloylamido-2-pyridyl)methyl]amine) ligand have been synthesized and characterized by X-ray crystallography, 1H NMR, UV-vis (Ni(II) and Co(II)) and infrared spectroscopy, and elemental analysis. Each complex has the empirical formula [(bppppa)M](ClO4)2 (M = Ni(II), 2; Zn(II), 3; Co(II), 4) and in the solid state exhibits a metal center having a coordination number of five; albeit, the cation of 2 also has a sixth weak interaction involving a perchlorate anion. Treatment of [(bppppa)Ni](ClO4)2 (2) with 1 equiv of acetohydroxamic acid results in the formation of [(bppppa)Ni(HONHC(O)CH3)](ClO4)2 (1), a novel Ni(II) complex having a coordinated neutral acetohydroxamic acid ligand. In 1, one phenyl-appended pyridyl donor of the bppppa chelate ligand is dissociated from the metal center and acts as a hydrogen bond acceptor for the hydroxyl group of the bound acetohydroxamic acid ligand. Treatment of 1 with excess water results in the formation of 2 and free acetohydroxamic acid. We hypothesize that this reaction occurs due to disruption of the intramolecular hydrogen bonding interaction involving the bound acid. In this series of reactions, the bppppa ligand exhibits behavior reminiscent of a type III hemilabile ligand in terms of one phenylpyridyl donor. Treatment of 3 or 4 with acetohydroxamic acid results in no reaction, indicating that the bppppa-ligated Ni(II) derivative 2 exhibits unique coordination chemistry with respect to reaction with acetohydroxamic acid within this series of complexes. We attribute this reactivity to the ability of the bppppa-ligated Ni(II) center to adopt a pseudo-octahedral geometry, whereas the Zn(II) and Co(II) complexes retain five coordinate metal centers.  相似文献   

15.
An efficient pathway for the stereocontrolled synthesis of functionalized, angularly fused tricyclic ring systems from readily available (1-alkynyl)carbene complexes [(OC)(5)M=C(OEt)C(triple bond)CR] (M=Cr, W; R=Ph, c-C(6)H(9)) is described. The synthesis involves the formation of a 1-metalla-1,3,5-hexatriene from the (1-alkynyl)carbene tungsten complex [(OC)(5)W=C(OEt)C(triple bond)C-c-C(6)H(9)] and a secondary amine, and its thermally induced pi-cyclization to a tetrahydroindene, which undergoes a spontaneous isomerization to another tetrahydroindene. Condensation of these tetrahydroindenes with pyran-2-ylidene complexes derived from (1-alkynyl)carbene complexes [(OC)(5)M=C(OEt)C(triple bond)CPh] (M=Cr, W) proceeds smoothly giving angularly fused tricyclic ring systems, rearrangement of which may generate spiro(cyclopentane-1,1-indanes) as side products. The synthesis is highly versatile and can be applied to the formation of various ring systems, such as steroid-type ring skeletons.  相似文献   

16.
Cluster excision of polymeric {Mo3S7Cl4}n phases with chiral phosphane (+)-1,2-bis[(2R,5R)-2,5-(dimethylphospholan-1-yl)]ethane ((R,R)-Me-BPE) or with its enantiomer ((S,S)-Me-BPE) yields the stereoselective formation of the trinuclear cluster complexes [Mo3S4{(R,R)-Me-BPE}3Cl3]+ ([(P)-1]+) and [Mo3S4{(S,S)-Me-BPE}3Cl3]+ ([(M)-1]+), respectively. These complexes possess an incomplete cuboidal structure with the metal atoms defining an equilateral triangle and one capping and three bridging sulfur atoms. The P and M symbols refer to the rotation of the chlorine atoms around the C3 axis, with the capping sulphur atom pointing towards the viewer. Incorporation of copper into these trinuclear complexes affords heterodimetallic cubane-type compounds of formula [Mo3CuS4{(R,R)-Me-BPE}3Cl4]+ ([(P)-2]+) or [Mo3CuS4{(S,S)-Me-BPE}3Cl4]+ ([(M)-2]+), respectively, for which the chirality of the trinuclear precursor is preserved in the final product. Cationic complexes [(P)-1]+, [(M)-1]+, [(P)-2]+, and [(M)-2]+ combine the chirality of the metal cluster framework with that of the optically active diphosphane ligands. The known racemic [Mo3CuS4(dmpe)3Cl4]+ cluster (dmpe = 1,2-bis(dimethylphosphanyl)ethane) as well as the new enantiomerically pure Mo3CuS4 [(P)-2]+ and [(M)-2]+ complexes are efficient catalysts for the intramolecular cyclopropanation of 1-diazo-5-hexen-2-one (3) and for the intermolecular cyclopropanation of alkenes, such as styrene and 2-phenylpropene, with ethyl diazoacetate. In all cases, the cyclopropanation products were obtained in high yields. The diastereoselectivity in the intermolecular cyclopropanation of the alkenes and the enantioselectivity in the inter- or intramolecular processes are only moderate.  相似文献   

17.
Menadione (vitamin K(3)) has been shown to form charge transfer complexes with N,N-dimethyl aniline, N,N-dimethyl p-toluidine and N,N-dimethyl m-toluidine in CCl(4) medium. The CT transition energies are well correlated with the ionisation potentials of the anilines. The formation constants of the complexes have been determined at a number of temperatures from which the enthalpies and entropies of formation have been obtained. The formation constants exhibit a very good linear free energy relationship (Hammett) at all the temperatures studied.  相似文献   

18.
Interactions of diaza-18-crown-6 and diaza-15-crown-5, as electron donors, with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), as an electron acceptor, have been investigated spectrophotometrically in acetonitrile and chloroform solutions. The results indicated immediate formation of an electron donor-electron acceptor complex DA: [reaction in text] which is followed by two relatively slow consecutive reactions: [reaction in text]. The pseudo-first-order rate constants for the formation of the ionic intermediate and the final product have been evaluated at various temperatures by computer fitting of the absorbance time data to appropriate equations. The formation constants of the resulting DA complexes have also been determined. The influences of both the azacrown's structure and the solvent properties on the formation of DA complexes and the rates of subsequent reactions are discussed.  相似文献   

19.
The cellulose solvent Pd-en, an aqueous solution of [(en)Pd(II)(OH)(2)] (en=ethylenediamine), reacts with the monosaccharides D-arabinose (D-Ara), D-ribose (D-Rib), rac-mannose (rac-Man), and D-galactose (D-Gal) under formation of dimetalated aldose complexes, if the molar ratio of Pd and sugar is 2:1 or larger. In the Pd(2) complexes, the aldoses are tetra-deprotonated and act as bisdiolato ligands. Two crystalline pentose complexes were isolated: [(en)(2)Pd(2)(beta-D-Arap1,2,3,4 H(-4))].5 H(2)O (1) and [(en)(2)Pd(2)(beta-D-Ribp1,2,3,4 H(-4))].6.5 H(2)O (2), along with two hexose complexes. With rac-Man, the major solution species is crystallized as the 9.4-hydrate [(en)(2)Pd(2)(beta-rac-Manp1,2,3,4 H(-4))].9.4 H(2)O (3). From the respective D-Gal solutions, [(en)(2)Pd(2)(beta-D-Galf1,3,5,6 H(-4))].5 H(2)O.C(2)H(5)OH (4), with the sugar tetraanion in its furanose form, is crystallized though it is not the major species, rather the second most abundant in purely aqueous solutions. The Galf species is enriched in the mother liquors to the extent of 25 % of total sugar content. Substitution of the en ligand by two molecules of ammonia, methylamine, or isopropylamine, respectively, results in the formation of different solution species. With the bulkiest ligand, isopropylamine, monometalation of the aldoses in the 1,2-position is exclusively observed.  相似文献   

20.
The radical complexes [(micro-L)[Ru(bpy)(2)](2)]*(3+), [(micro-bmtz)[Ru(cym)Cl](2)]*(+) and [(micro-L)[Re(CO)(3)Cl](2)]*(-), where L are 3,6-disubstituted 1,2,4,5-tetrazines such as 3,6-bis(2-pyrimidyl)-1,2,4,5-tetrazine (bmtz) and cym =p-cymene, were studied by X-band EPR in fluid solution and by 285 GHz EPR in glassy frozen solution. A comparison with other transition metal complexes (Cu, Rh, Os, Ir, Pt) involving tetrazine radical ligands reveals that the g anisotropy reflects (i) the pi acceptor effect of the tetrazine substituents, (ii) the competition from ancillary pi acceptor ligands for back donation from the metal, and (iii) the spin-orbit coupling contributions from the transition metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号