首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We demonstrate a new technique that combines polarization sensitivity of the coherent anti‐Stokes Raman scattering (CARS) response with heterodyne amplification for background‐free detection of CARS signals. In this heterodyne interferometric polarization CARS (HIP‐CARS), the major drawbacks of polarization and heterodyne CARS are rectified. Using a home‐built picosecond optical parametric oscillator, we are able to address vibrational stretches between 600 and 1650 cm−1 and record continuous high‐resolution Raman equivalent HIP‐CARS spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
If Coherent Antistokes Raman Scattering (CARS) is excited by a biharmonic pump in resonance with one photon molecular transition, the Raman line shape is significantly changed compared to the case of nonresonant excitation. This is due to an essential alteration of the 3rd order susceptibility responsible for CARS. Aside from a considerable enhancement of the Raman signal (which makes it possible to detect dissolved molecules in concentration lower than 10-4 mole/l) the most marked effects are a reversal of the spectral sequence of the Raman maximum and minimum in the CARS-spectrum and for a specially chosen concentration an enhanced contrast of the signal. The factors determining the CARS line shape are discussed theoretically and preliminary experimental results concerning resonance CARS spectra are reported.  相似文献   

3.
Coherent anti-Stokes Raman scattering (CARS) and normal anti-Stokes Raman scattering (NARS) have been measured in (001) GaP at room temperature due to the 403 cm−1 LO phonons using a continuous wave (CW) 785.0 nm fixed-wavelength pump laser and a CW Stokes laser tunable in the 800-830 nm wavelength range. CARS measurements are normally made using pulsed lasers. The use of CW diode lasers allows a more accurate comparison between the measured and calculated values of the CARS signal. The pump and Stokes laser beams were linearly polarized perpendicular to each other, same as the pump and normal Stokes/anti-Stokes scattered light for the GaP sample used in this work. The pump and Stokes laser powers incident upon the GaP sample, located in the focal plane of a 20 mm effective focal length lens, were <20 and 50 mW, respectively. The diameter of the laser beams in the focal plane of the focusing lens was determined to 40±5 μm. The pump and Stokes laser beam intensities incident upon the 0.3 mm thick GaP sample were <2 and 5 kW cm2, respectively. The powers of the CARS and NARS signals were measured using a Raman spectrometer. The signal output of the Raman spectrometer was calibrated using the pump laser and several neutral density filters. The Raman linewidth (full-width at half-maximum) of the LO phonons was determined to be 0.95±0.05 cm−1, using the variation of the CARS signal with the wavelength of the Stokes laser. The measured powers of the CARS and NARS signals are about a factor of 5 and 1.5, respectively, smaller than those calculated from the corresponding theoretical expressions.  相似文献   

4.
邓莉 《物理学报》2011,60(7):77801-077801
采用两束圆偏振啁啾飞秒激光脉冲,非共线相干激发三原子分子CS2液体. 在相位匹配的方向上,探测到由CS2频率为397 cm-1的振动模式产生的强度对称分布的相干反斯托克斯拉曼散射(CARS)信号和相干斯托克斯拉曼散射(CSRS)信号. 当调整两束激发光的圆偏振状态时,CARS,CSRS信号的强度、偏振、波长均发生规律性的改变:CARS,CSRS信号的强度分布反映了CS2 在不同极化状态下的受激拉曼散射截面大小;信号光的 关键词: 啁啾脉冲 相干反斯托克斯拉曼散射(CARS) 相干斯托克斯拉曼散射(CSRS) 2')" href="#">CS2  相似文献   

5.
Vibrational spectra recorded by coherent anti-Stokes resonance Raman scattering (CARS) from bacteriorhodopsin (BR) samples containing isotopically substituted (2H and 13C) retinal chromophores were measured using high repetition rate, low-power, picosecond pulsed excitation (λ1=580 nm and λs=640±3 nm). These picosecond resonance CARS (PR/CARS) data were analyzed via third-order susceptibility relationships [χ ( 3 ) ] to obtain band origins, bandwidths, relative intensities, and electronic phase factors assignable to all significant vibrational Raman features in the 1490–1700 cm−1 wavenumber region (the ethylenic stretching and C = N–H rocking or Schiff base modes). Isotopic substitution selectively places 2H at C15, 13C singly at the C10 position and at the C14 position, and 13C simultaneously in positions of C14 and C15. Each isotopic BR sample was examined not only in H2O, but also in D2O, which places a 2H at the Schiff base nitrogen of the retinal. In addition, PR/CARS data were recorded from each isotopic BR sample following either light adaptation [i.e. the BR sample contained a single retinal isomer (all- trans , 15- anti or BR-570)] or dark adaptation [i.e. the BR sample contained a mixture of comparable amounts of retinal isomers (BR-570 and 13- cis , 15- syn or BR-548)]. Excellent agreement was found between the vibrational features observed by PR/CARS and those obtained from spontaneous resonance Raman measurements from the same isotopically substituted BR pigments. Several new vibrational features were also found from the PR/CARS data. Vibrational Raman data from three of the isotopic BR samples in D2O are reported for the first time.  相似文献   

6.
Yuika等人利用偏振CARS技术可以准确地确定分子的拉曼退偏比.其方法是,首先对不同检偏角d所对应CARS谱峰的频率分布进行数学模拟,然后由所得系数随检偏角φd的变化求得使CARS信号中共振项消失的偏振角φd,最后由消失条件ρ=-1/(tanθtanφ0d)求出退偏比ρθ为产生CARS光的Pump光与Stokes光偏振方向的夹角.本文提出的数据处理方法,即交点法.同Yuika等人处理数据的方法相比,交点法毋需关于谱峰频率分布的知识,做法也更为简便.  相似文献   

7.
采用钛宝石飞秒激光器输出的一部分光抽运光子晶体光纤以产生超连续光谱,作为抽运光和斯托克斯光,另一部分飞秒激光作为探测光,并结合时间延迟方法,建立超连续光谱激发时间分辨相干反斯托克斯拉曼散射(CARS)实验系统,测试了具有较宽拉曼光谱的二甲基亚砜样品.实验结果表明,所建立的实验系统能有效抑制非共振背景噪声,并且通过一次测量,即可获得二甲基亚砜在690—3200cm-1范围内的CARS光谱信息,获得的二甲基亚砜CARS光谱范围达到2500cm-1.同时给出了所采用的光子晶体光纤光谱展宽的实验结果.  相似文献   

8.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy of gas‐phase CO2 is demonstrated using a single femtosecond (fs) laser beam. A shaped ultrashort laser pulse with a transform‐limited temporal width of ∼7 fs and spectral bandwidth of ∼225 nm (∼3500 cm−1) is employed for simultaneous excitation of the CO2 Fermi dyads at ∼1285 and ∼1388 cm−1. CARS signal intensities for the two Raman transitions and their ratio as a function of pressure are presented. The signal‐to‐noise ratio of the single beam–generated CO2 CARS signal is sufficient to perform concentration measurements at a rate of 1 kHz. The implications of these experiments for measuring CO2 concentrations and rapid pressure fluctuations in hypersonic and detonation‐based chemically reacting flows are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
K. Tada  N. Karasawa   《Optics Communications》2009,282(19):3948-3952
Pulse trains of fundamental soliton pulses with different center wavelengths and delay times from a photonic crystal fiber were generated and used as Stokes optical pulses in coherent anti-Stokes Raman scattering (CARS) spectroscopy. The pulse trains were created by shaping optical pulses with a pulse shaper and their waveforms were measured by a cross-correlation frequency-resolved optical gating method. By the use of pulse trains, the time required for obtaining broadband CARS signals was reduced to be about one third compared with our previous study without using pulse trains. With this setup, broadband CARS signals between 500 and 3100 cm−1 of a single polystyrene bead sample have been measured and the most of the Raman peaks in this frequency range of samples have been observed clearly.  相似文献   

10.
The available fiber lasers, photonic-crystal fiber (PCF) frequency converters, and hollow-core PCFs are shown to offer realistic practical solutions for an all-fiber format of coherent anti-Stokes Raman scattering (CARS) in the gas phase. In view of the substantial enhancement of CARS in the guided modes of hollow-core PCFs, a broad class of compact ytterbium and erbium fiber laser sources become suitable for the CARS analysis of gas media. The quantum limit of the signal-to-noise ratio, S/N, in all-fiber CARS is shown to scale as λα-1a-2 with radiation wavelength λ, fiber loss α, and the fiber core radius,aleading, in the case of a hollow-PCF gas cell, to a dramatic improvement of S/N relative to CARS in the regime of tight focusing. PACS 42.65.Wi; 42.81.Qb  相似文献   

11.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy is an important technique for spectroscopy and chemically selective microscopy, but wider implementation requires dedicated versatile tunable sources. We describe an optical parametric oscillator (OPO) based on a magnesium oxide‐doped periodically poled lithium niobate crystal, with a novel variable output coupler, used as a tunable coherent light source. The OPO's signal wavelength ranges from 880 to 1040 nm and its idler wavelength from 1090 to 1350 nm. We use this OPO to demonstrate high‐resolution narrowband CARS spectroscopy on bulk polystyrene from 900 to 3600 cm−1, covering a large part of the molecular fingerprint region. Recording vibrational spectra using narrowband CARS spectroscopy has several advantages over spontaneous Raman spectroscopy, which we discuss. We isolate the resonant part of the CARS spectrum and compare it to the spontaneous Raman spectrum of polystyrene using the maximum entropy method of phase retrieval; we find them to be in extremely good agreement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A multiplex CARS spectrometer based on a cw diode-pumpedQ-switched Nd: YLF laser, a broadband dye-laser and a multichannel spectrum detection system has been constructed. Excellent mode characteristics of the laser beams and high pulse repetition rate (2 kHz) have resulted in good signal-to-noise ratio achieved with a few seconds accumulation time. A 1000 cm–1 wide spectral range is covered in a single CARS spectrum with an expanded bandwidth of the dye laser. A thin-jet sampling method is used in order to avoid the phase-matching limitation. The efficient spectral intensity normalization by the reference (CCl4) nonresonant spectrum and subsequent computer fitting have been implemented. The performance of the system is demonstrated by two different experiments. First, the polarization sensitive measurements (PS-CARS) of cyclohexane show its potential for accurate Raman depolarization ratio determination and for detection of weak (overlapped) Raman bands. Second, the transient resonance CARS measurement of the lowest excited triplet state of all-trans retinal indicate its feasibility to time-resolved CARS spectroscopy of fluorescent excited states.  相似文献   

13.
This paper reviews the various physico-chemical processes responsible for actual linewidths encountered in high-resolution coherent anti-Stokes Raman spectroscopy (CARS). Most of the experimental data are based on linewidth measurements using a pulseamplified CARS spectrometer with an emission bandwidth (FWHM) of 2×10–3 cm–1. Detailed rotational and vibrational relaxation constants have been obtained from the analysis of theQ-branch profiles of C2H2, N2, CH4, and SiH4.  相似文献   

14.
A double-channel spectrometer, which enables to acquire ultrabroadband single-pulse spectra of liquids by Coherent Anti-Stokes Raman Spectroscopy (CARS), is described. The method used to fulfill the phase-matching condition is based on the fact that the CARS efficiency in dispersive media is the largest when the interactive waves cross each other under frequency-determined angles. The dependence of the spatial separation between the pump and Stokes beam, in front of the crossing CARS lens, due to their frequency difference is analysed. It is shown that the different spectral components of an ultrabroadband Stokes source have phase-matched the CARS process when they are laterally shifted by a conjugated prism pair and focused into the sample. The method is tested in the spectral region 2800–3800 cm–1 of a non-resonant medium (CCl4) using an ultrabroadband dye laser (1000 cm–1 FWHM). The influence of the Stokes beam spatial dispersion on the width of CARS generation is demonstrated. By this method, 1060 cm–1 wide single-pulse spectra of the OH stretching vibration of liquid water are obtained for the first time. The ratio between the resonant and non-resonant part of the third-order susceptibility in water and methanol is determined.  相似文献   

15.
我们在656厘米-1到1343厘米-1的频率范围研究了光纤维的调谐喇曼混频(RM)效应。在实验中观察到下列现象:相干反斯托克斯喇曼散射(CARS)的大小与逆喇曼吸收(VRA)的大小成反比;RM对受激喇曼散射(SRS)的强度分布有强烈影响。除了观测到相干斯托克斯(CSRS)和CARS辐射,还观测到二级相干斯托克斯(SOCSRS)和相干反斯托克斯(SOCARS)辐射。对实验结果进行了讨论。 关键词:  相似文献   

16.
Time-resolved dual-broadband picosecond pure rotational CARS has been applied to measure self-broadened S-branch N2–N2 Raman linewidths in the temperature range 294–1466 K. The coherence decays were detected directly in the time domain by following the J-dependent CARS signal decay as a function of probe delay. The rotational Raman N2–N2 linewidths were derived from these time-dependent decays and evaluated for thermometric accuracy. Comparisons were made to the energy-corrected sudden (ECS) and modified exponential gap (MEG) dynamical scaling laws, and the results were used to quantify the sensitivity of nanosecond rotational CARS thermometry to the linewidth model employed. The uncertainty based on the linewidth model used in pure N2 was found to be 2 %. The merits and limitations of this rapid method for the determination of accurate Raman linewidths are discussed.  相似文献   

17.
The molecular dynamics process is investigated in this paper using a broadband fs time-resolved coherent anti-Stokes Raman spectroscopy (CARS) technique. By varying the timing of laser pulses, low vibrational states are started and studied on both the electronically excited B(3Π0u+) state and ground X(1Σ0g+) state of iodine in the gas phase at room temperature. According to change the pump wavelength or Stokes pulse as well as the wavelength of the detection window for the CARS signal, dynamics on different potential-energy surfaces can be accessed and detected by the CARS spectroscopy. Results show that the period of the oscillation is decreased for the excited B(3Π0u+) state as the wavelength of the pump pulses is increased, while it is increased for the ground X(1Σ0g+) state with the increase of the Stokes wavelength.  相似文献   

18.
19.
Rotational coherent anti‐Stokes Raman spectroscopy (CARS) in fuel‐rich hydrocarbon flames, with a large content of hydrogen in the product gases (∼20%), has in previous work shown that evaluated temperatures are raised several tens of Kelvin by taking newly derived N2 H2 Raman line widths into account. To validate these results, in this work calibrated temperature measurements at around 300, 500 and 700 K were performed in a cell with binary gas mixtures of nitrogen and hydrogen. The temperature evaluation was made with respect to Raman line widths either from self‐broadened nitrogen only, N2 N2 [energy‐corrected‐sudden (ECS)], or by also taking nitrogen broadened by hydrogen, N2 H2 [Robert–Bonamy (RB)], Raman line widths into account. With increased amount of hydrogen in the cell at constant temperature, the evaluated CARS temperatures were clearly lowered with the use of Raman line widths from self‐broadened nitrogen only, and the case with inclusion of N2 H2 Raman line widths was more successful. The difference in evaluated temperatures between the two different sets increases approximately linearly, reaching 20 K (at T ∼ 300 K), 43 K (at T = 500 K) and 61 K (at T = 700 K) at the highest hydrogen concentration (90%). The results from this work further emphasize the importance of using adequate Raman line widths for accurate rotational CARS thermometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
An optical parametric oscillator (OPO), as a novel kind of broadband Stokes source, is employed for coherent anti-Stokes Raman spectroscopy (CARS). Compared to the conventional dye laser configuration OPO-CARS offers practical advantages. The tunable OPO allows a fast and comfortable frequency tuning. The excitation bandwidth of about 35 cm–1 (FWHM) limits the spectral range of effective and stable single pulse CARS generation but can be used to enhance selected spectral structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号