首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure and magnetic properties of LaFe13−xSix and Co-substituted LaFe11.8−xCoxSi1.2 alloys prepared by melt spinning, as well as of LaFe11.57Si1.43Hx hydrides prepared by reactive milling are investigated. The hysteresis in the temperature- and field-induced phase transitions is significantly reduced as compared with conventional bulk alloys, which makes these materials very attractive for magnetic refrigerant applications. The unusual combination of features characteristic of first- and second-order phase transitions in the La(Fe,Si)13-based compounds is discussed on the basis of density-functional electronic structure calculations.  相似文献   

2.
The magnetic properties of a set of LaFe13?x?yCoySix compounds (x = 1.6 ? 2.6; y = 0, y = 1.0) have been investigated using magnetic measurements, thermal expansion, 57Fe Mössbauer spectroscopy and high resolution neutron powder diffraction methods over the temperature range 10–300 K. The natures of the magnetic transitions in these LaFe13?x?yCoySix compounds have been determined. The Curie temperatures of LaFe13?xSix were found to increase with Si content from TC = 219(5) K for Si content x = 1.6 to TC = 250(5) K for x = 2.6. Substitution of Co for Fe in LaFe10.4Si2.6 resulted in a further enhancement of the magnetic ordering temperature to TC = 281(5) K for the LaFe9.4CoSi2.6 compound. The nature of the magnetic transition at the Curie temperature changes from first order for LaFe11.4Si1.6 to second order for LaFe10.4Si2.6 and LaFe9.4CoSi2.6. The temperature dependences of the mean magnetic hyperfine field values lead to TC values in good agreement with analyses of the magnetic measurements. The magnetic entropy change, ?ΔSM, has been determined from the magnetization curves as functions of temperature and magnetic field (ΔB = 0 ? 5 T) by applying the standard Maxwell relation. In the case of LaFe12.4Si1.6 for example, the magnetic entropy change around TC is determined to be -ΔSM ~ 14.5 J kg?1 K?1 for a magnetic field change Δ B = 0 ? 5 T.  相似文献   

3.
The effects of introducing Ce and C atoms on the Curie temperature (TC), the magnetic entropy change (ΔSM) and the hysteresis loss have been investigated in the NaZn13-type LaFe11.5Si1.5 compound. Partial replacement of La with Ce leads to a decrease in TC and an increase in ΔSM; however, the introduction of interstitial C atoms can adjust TC to high temperature. The itinerant-electron metamagnetic transition is weakened after carbonization, which results in a reduction of both the hysteresis loss and magnetocaloric effect (MCE). The maximum value of ΔSM for La0.8Ce0.2Fe11.5Si1.5C0.2 is found to be −28 J/kg K at TC=207 K with an effective refrigeration capacity of 420 J/kg for a field change from 0 to 5 T. Our study reveals that the enhancements of both TC and MCEs can be achieved simultaneously in the La1−xCexFe11.5Si1.5Cy compounds by adjusting the concentrations of Ce and C atoms appropriately.  相似文献   

4.
The structure and magnetic properties of LaFe13−xSix and Co-substituted LaFe11.8−xCoxSi1.2 alloys prepared by melt spinning, as well as of LaFe11.57Si1.43Hx hydrides prepared by reactive milling are investigated. The hysteresis in the temperature- and field-induced phase transitions is significantly reduced as compared with conventional bulk alloys, which makes these materials very attractive for magnetic refrigerant applications. The unusual combination of features characteristic of first- and second-order phase transitions in the La(Fe,Si)13-based compounds is discussed on the basis of density-functional electronic structure calculations.  相似文献   

5.
Very large magnetic entropy change Δ SM, which originates from a fully reversible second-order transition at Curie temperature TC, has been discovered in compounds La(Fe, Si)13, La(Fe, Al)13 and those with Co doping. The maximum change ΔSM\approx19 J·kg-1·K-1, achieved in LaFe11.4Si1.6 at 209K upon a 5T magnetic field change, exceeds that of Gd by more than a factor of 2. The TC of the Co-doped compounds shifts to higher temperatures. ΔSM still has a considerable large magnitude near room temperature. The phenomena of very large ΔSM, convenience of adjustment of TC, and also thesuperiority of low cost, strongly suggest that the compounds La(Fe, M)13 (M=Si, Al) with Co doping are suitable candidates for magnetic refrigerants at high temperatures.  相似文献   

6.
The magnetic and hyperfine properties of iron impurities in 3C- and 6H- silicon-carbide are calculated using the abinitio method of full-potential linear-augmented-plane-waves. The iron atoms are introduced at substitutional carbon, Fe C , and silicon, Fe Si , sites as well as at the tetrahedral interstitial sites with four nearest neighbours carbon atoms, Fe I (C), and four nearest neighbours silicon atoms, Fe I (Si). The effect of introducing vacancies at the neighbours of these sites is also studied. Fe atoms with complete neighbors substituted at Si or C sites are found to be nonmagnetic, while Fe atoms at interstitial sites are magnetic. Introduction of a vacancy at a neighboring site reverse the picture.  相似文献   

7.
沈保根  胡凤霞  董巧燕  孙继荣 《中国物理 B》2013,22(1):17502-017502
In this article,our recent progress concerning the effects of atomic substitution,magnetic field,and temperature on the magnetic and magnetocaloric properties of the LaFe13-xAlx compounds are reviewed.With an increase of the aluminum content,the compounds exhibit successively an antiferromagnetic(AFM) state,a ferromagnetic(FM) state,and a mictomagnetic state.Furthermore,the AFM coupling of LaFe 13-xAlx can be converted to an FM one by substituting Si for Al,Co for Fe,and magnetic rare-earth R for La,or introducing interstitial C or H atoms.However,low doping levels lead to FM clusters embedded in an AFM matrix,and the resultant compounds can undergo,under appropriate applied fields,first an AFM-FM and then an FM-AFM phase transition while heated,with significant magnetic relaxation in the vicinity of the transition temperature.The Curie temperature of LaFe13-xAlx can be shifted to room temperature by choosing appropriate contents of Co,C,or H,and a strong magnetocaloric effect can be obtained around the transition temperature.For example,for the LaFe 11.5Al1.5C0.2H1.0 compound,the maximal entropy change reaches 13.8 J·kg-1 ·K-1 for a field change of 0-5 T,occurring around room temperature.It is 42% higher than that of Gd,and therefore,this compound is a promising room-temperature magnetic refrigerant.  相似文献   

8.
Phase formation, structure, and the magnetocaloric effect (MCE) in as-cast LaFe11.5Si1.5Bx (x=0.5, 1.0) compounds have been studied. The Curie temperatures, TC, are ∼211 and 230 K for x=0.5 and 1.0, respectively, which are higher than that of annealed LaFe11.5Si1.5 (TC=183 K), while the maximum magnetic entropy changes at the respective TC under a magnetic field change of 0-5 T are 7.8 and 5.8 J/(kg K). Wavelength dispersive spectrometry (WDS) analysis shows that only a small fraction of boron atoms is dissolved in the NaZn13-type structure phase, and that the compositions of the as-cast LaFe11.5Si1.5Bx (x=0.5, 1.0) alloys are much different from the intended nominal compositions. These as-cast alloys exhibit second-order magnetic phase transitions and low MCEs. However, based on the relative cooling power, the as-cast LaFe11.5Si1.5Bx alloys are promising candidates for magnetic refrigerants over a wide temperature range.  相似文献   

9.
陈怡  申江 《物理学报》2009,58(13):141-S145
利用Chen-Mbius晶格反演获得的原子间相互作用势,对NaZn13型Fe基金属间化合物进行原子级模拟研究.计算结果表明,Si原子和Co原子均优先占据96i晶位,Si原子和Co原子替代Fe原子后晶体平均结合能降低.随着Co含量的增加,LaFe13-x-yCoySix和NdFe13-x-yCoySix的晶格参数逐渐降低.声子态密度中,稀土原子主要激发低频模,Si原子主要激发高频模.LaFe11.5-yCoySi1.5化合物的德拜温度随Co含量的增加而增高. 关键词: 晶格反演 原子间相互作用势 热力学性质 磁致冷材料  相似文献   

10.
We have studied the magnetic, magnetocaloric, and magnetostriction properties of LaFe11.4Si1.6 and La(Fe0.99Z0.01)11.4Si1.6 (Z=Ni, Cu, Cr, V) compounds using magnetization and strain gauge techniques. It was found that substitution of 1% of the Fe by Z-elements results in an increase in the Curie temperature (TC), and affects the magnetostriction and magnetocaloric properties of the parent compound, LaFe11.4Si1.6. A maximum shift in TC of about 11 K, and significantly smaller hysteresis losses in the vicinity of TC compared with those of the base compound, were found for Z=V. The maximum magnetovolume coupling constant was estimated to be ndd≈2.7×10−3 (μB/Fe atom)−2 for the parent compound. The changes in the volume magnetostriction, the magnetovolume coupling constant, and the magnetocaloric properties are strongly correlated with composition. The relative effects of the variation in cell parameters and electron concentration on the magnetostriction, TC, and the magnetocaloric properties are discussed.  相似文献   

11.
Magnetic properties and magnetocaloric effects (MCEs) have been investigated in hydrogenated LaFe11.7 Si1.3H x (x=0,1.37, and 2.07) compounds. It is found that the Curie temperature, T C, can be tuned from 192 to 338 K by adjusting the hydrogen content from 0 to 2.07. It is attractive that both thermal and magnetic hysteresis are remarkably reduced because of the weakness of the itinerant-electron metamagnetic transition after hydrogenation. The maximal hysteresis loss at T C decreases from 33.4 to 8.8 J/kg as x increases from 0 to 2.07. For the samples with x=0,1.37, and 2.07, the maximal values of the isothermal magnetic entropy change, ΔS M, are 20.9, 15.1, and 15.83 J/kg K for the increasing field and 20.76 J/kg K, 14.53 J/kg K and 15.61 J/kg K for the decreasing field at T C, with efficient refrigeration capacities of 439, 330, and 304 J/kg for a field change of 0–5 T, respectively. Large reversible MCE and small hysteresis with considerable refrigeration capacity indicate the potential of LaFe11.7Si1.3H x hydride as a candidate magnetic refrigerant around room temperature.  相似文献   

12.
Crystal structure, magnetism and magnetocaloric properties of LaFe11.7Si1.3Ny (y=0, 1.3) compounds have been studied by X-ray diffraction and magnetic measurements. The LaFe11.7Si1.3Ny compounds present a cubic NaZn13-type structure. Insertion of 1.3 nitrogen atoms per LaFe11.7Si1.3 formula increases the lattice parameter and Curie temperature from 11.467 to 11.733 Å and from 190 to ∼230 K, respectively. Besides, the absorption of nitrogen drives drastically the magnetic transition from first to second order and accordingly strongly decreases the magnetocaloric effect compared to the parent alloy. Under an external field change of 5 T, the value of isothermal entropy change −ΔS is about 28 and 3.5 J/kg K for LaFe11.7Si1.3 and LaFe11.7Si1.3N1.3, respectively, close to their Curie temperature. However, the relative cooling power RCP(S) of the nitride is about half that of the parent alloy.  相似文献   

13.
The LaFe11.5Si1.5H1.3 interstitial compound has been prepared. Its Curie temperature TC (288 K) has been adjusted to around room temperature, and the maximal magnetic entropy change (|ΔS|~17.0 J·kg-1·K-1 at TC) is larger than that of Gd (|ΔS|~9.8 J·kg-1·K-1 at TC=293 K) by ~73.5% under a magnetic change from 0 to 5 T. The origin of the large magnetic entropy change is attributed to the first-order field-induced itinerant-electron metamagnetic transition. Moreover, the magnetic hysteresis of LaFe11.5Si1.5H1.3 under the increase and decrease of the field is very small, which is favourable to magnetic refrigeration application. The present study suggests that the LaFe11.5Si1.5H1.3 compound is a promising candidate as a room-temperature magnetic refrigerant.  相似文献   

14.
Structural, magnetic and magnetocaloric properties of La1−xErxFe11.44Si1.56 (x=0, 0.1 and 0.3) compounds were investigated by X-ray diffraction and magnetic measurements. These compounds have a cubic NaZn13 structure with ferromagnetic structure. X-ray powder diffraction showed that the lattice parameter decreases with increasing Er concentration indicating the introduction of Er atoms in the La–Fe phase. The Curie temperature increases slightly with increasing Er up to x=0.3. Magnetic entropy change ΔSm allowing estimation of the magnetocaloric effect (MCE) was determined based on thermodynamic Maxwell's relation. A large magnetic entropy change was observed for low Er contents, the origin of the large MCE is attributed to the first-order field-induced itinerant-electron metamagnetic transition (IEM). However, a decrease of ΔSm with increasing Er concentration is observed. This reduction in magnetocaloric properties is explained by the fact that the increase of Er content in La1−xErxFe11.44Si1.56 formula drives the Ferro–Para transition towards second order and eliminates the metamagnetic transition.  相似文献   

15.
傅斌  龙毅  史普辑  马涛  鲍博  闫阿儒  陈仁杰 《中国物理 B》2009,18(10):4506-4510
Hydrogen absorptions of LaFe11.5Si1.5 compound in 1-atm hydrogen gas at different temperatures are investigated. The hydrogen content in the hydrogenated sample does not increase with the increase of temperature of hydrogen absorption but changes complicatedly. The characteristic of first-order transition in LaFe11.5Si1.5 compound is weakened after hydrogen absorption. It leads the peaks of magnetic entropy to become wider and the hysteresis loss to reduce significantly, but relative cooling power (RCP) is not changed considerably.  相似文献   

16.
Our investigations on substitutional and interstitial Fe in the group IV semiconductors, from 57Fe Mössbauer measurements following 57Mn implantation, have been continued with investigations in 3C-SiC. Mössbauer spectra were collected after implantation and measurement at temperatures from 300 to 905 K. Following comparison with Mössbauer parameters for Fe in Si, diamond and Ge, four Fe species are identified: two due to Fe in tetrahedral interstitial sites surrounded, respectively, by four C atoms (Fei.C) or four Si atoms (Fei,Si) and two to Fe in (or close to) defect free or implantation damaged substitutional sites. An annealing stage at 300–500 K is evident. Above 600 K the Fei,Si fraction decreases markedly, reaching close to zero intensity at 905 K. This is accompanied by a corresponding increase in the Fei,C fraction.  相似文献   

17.
The phase diagram of the magnetocaloric MnxFe2−xP1−ySiy quaternary compounds was established by characterising the structure, thermal and magnetic properties in a wide range of compositions (for a Mn fraction of 0.3 ≤ x < 2.0 and a Si fraction of 0.33 ≤ y ≤ 0.60). The highest ferromagnetic transition temperature (Mn0.3Fe1.7P0.6Si0.4, TC = 470 K) is found for low Mn and high Si contents, while the lowest is found for low Fe and Si contents (Mn1.7Fe0.3P0.6Si0.4, TC = 65 K) in the MnxFe2−xP1−ySiy phase diagram. The largest hysteresis (91 K) was observed for a metal ratio close to Fe:Mn = 1:1 (corresponding to x = 0.9, y = 0.33). Both Mn-rich with high Si and Fe-rich samples with low Si concentration were found to show low hysteresis (≤2 K). These compositions with a low hysteresis form promising candidate materials for thermomagnetic applications.  相似文献   

18.
The aim of the present work was to study the negative lattice expansion of the La(Fe,Si)13 phase in the LaFe11.2Co0.7Si1.1 alloy modified by Ce, Ho, Pr or Mn. The highest change of lattice constant was observed for sample doped with Ce, which was result of the first order phase transition, previously observed in this alloy. The gradual decrease of relative change of lattice parameter with increase of Mn content was detected. Furthermore, anomalous behavior of temperature dependence of lattice constant for α-Fe phase was also observed. The X-ray diffraction analysis showed that this phenomenom is caused by negative lattice expansion of the La(Fe,Si)13 phase.  相似文献   

19.
The phase relation of LaFe11.5Si1.5 alloys annealed at different high-temperature from 1223 K (5 h) to 1673 K (0.5 h) has been studied. The powder X-ray diffraction (XRD) patterns show that large amount of 1:13 phase begins to form in the matrix alloy consisting of α-Fe and LaFeSi phases when the annealing temperature is 1423 K. In the temperature range from 1423  to 1523 K, α-Fe and LaFeSi phases rapidly decrease to form 1:13 phase, and LaFeSi phase is rarely observed in the XRD pattern of LaFe11.5Si1.5 alloy annealed at 1523 K. With annealing temperature increasing from 1573  to 1673 K, the LaFeSi phase is detected again in the LaFe11.5Si1.5 alloy, and there is La5Si3 phase when the annealing temperature reaches 1673 K. There almost is no change in the XRD patterns of LaFe11.5Si1.5 alloys annealed at 1523 K for 3-5 h. According to this result, the La0.8Ce0.2Fe11.5−xCoxSi1.5 (0≤×≤0.7) alloys are annealed at 1523 K (3 h). The analysis of XRD patterns shows that La0.8Ce0.2Fe11.5xCoxSi1.5 alloys consist of the NaZn13-type main phase and α-Fe impurity phase. With the increase of Co content from x=0 to 0.7, the Curie temperature TC increases from 180 to 266 K. Because the increase of Co content can weaken the itinerant electron metamagnetic transition, the order of the magnetic transition at TC changes from first to second-order between x=0.3 and 0.5. Although the magnetic entropy change decreases from 34.9 to 6.8 J/kg K with increasing Co concentration at a low magnetic field of 0-2 T, the thermal and magnetic hysteresis loss reduces remarkably, which is very important for the magnetic refrigerant near room temperature.  相似文献   

20.
The high-temperature phase transition is analyzed according to the DSC of as-cast LaFe11.7 Si1.3 compound and the X-ray patterns of LaFe11.7Si1.3 compounds prepared by high-temperature and short-time annealing. Large amount of 1:13 phase begins to appear in LaFe11.7Si1.3 compound annealed near the melting point of LaFeSi phase (about 1422?K). When the annealing temperature is close to the temperature of peritectic reaction (about 1497?K), the speed of 1:13 phase formation is the fastest. The phase relation and microstructure of the LaFe11.7Si1.3 compounds annealed at 1523?K (5?h), 1373?K (2?h)?+?1523?K (5?h), and 1523?K (7?h) +1373?K (2?h) show that longer time annealing near peritectic reaction is helpful to decrease the impurity phases. For studying the influence of different high-temperature and short-time annealing on magnetic property, the Curie temperature, thermal, and magnetic hystereses, and the magnetocaloric effect of LaFe11.7Si1.3 compound annealed at three different temperatures are also investigated. Three compounds all keep the first order of magnetic transition behavior. The maximal magnetic entropy change ΔSM (T, H) of the samples is 12.9, 16.04, and 23.8?J?kg?1?K?1 under a magnetic field of 0–2?T, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号