首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to propose a mathematical method to investigate and optimize the simultaneous elimination process of multiple organic pollutants using the Fenton process. Hence, the treatment of rhodamine B (RB) and acid red 14 (AR14) dyes in their binary solution was studied. Multivariate curve resolution alternating least square (MCR-ALS), a novel chemometric method, was applied along with correlation constraints to resolute the UV-Vis spectrophotometric data, enabling quantification of investigated dyes despite a high spectral overlapping. Response surface methodology was adopted to assess the model and optimize individual and interactive effects of three independent factors (Fe2+, H2O2 and initial pH) on the simultaneous elimination of RB and AR14. The values of the regression coefficient for RB and AR14 were determined as 98.48 and 98.67 percent, respectively, revealing the reliability of the obtained polynomial models to predict decolorization efficiencies. Desirability function was employed to optimize the independent variables to attain the highest possible degradation performance for both dyes in their binary solution. At the optimum point of operation ([Fe2+] = 143.88 mg/L, [H2O2] = 126.89 mg/L and pH = 3.71), degradation efficiencies of RB and AR14 were found as 81.58% and 80.22%, respectively, which were nearly identical to the experimental results.  相似文献   

2.
Cristina Fernández 《Talanta》2009,79(5):1292-1297
The influence of several factors in the simultaneous photocatalytic degradation of three textile dyes - Acid Red 97, Acid Orange 61 and Acid Brown 425 - has been studied using a fractional factorial design 25-1. The considered factors were: the initial concentration of each dye, the catalyst concentration (TiO2) and pH.First, we developed a rapid analytical methodology based on recording UV-visible spectra during the degradation process and a data treatment using multivariate curve resolution with alternating least squares (MCR-ALS), which enabled the three dyes to be quantified simultaneously despite the overlap of their spectra.The kinetic constant of degradation for each dye in all the experiments was evaluated. In all cases the degradation followed a first order kinetics. For a significance level of 5%, the most important factor in the photodegradation of each dye is the concentration of Acid Red 97, the degradation is more effective at higher pHs and, in the studied range, the concentration of the catalyst is not important.  相似文献   

3.
In the current study, Bismuth molybdate was synthesized using simple co-precipitation procedure, and their characterization was carried out by various methods such as FT-IR, SEM, and P-XRD. Furthermore, the photocatalytic degradation of Orange G (ORG) dye using synthesized catalyst under visible light irradiation was studied. Response surface Method was used for the optimization of process variables and degradation kinetics evaluated by modeling of experimental data. Based on the experimental design outcomes, the first-order model was proven as a practical correlation between selected factors and response. Further ANOVA analysis has revealed that only two out of six factors have a significant effect on ORG degradation, however ORG concentration and irradiation time indicated the significant effects sequentially. Maximum ORG degradation of approximately 96% was achieved by keeping process parameters in range, such as 1 g L−1 loading of catalyst, 50 mg L−1 concentration of ORG, 1.4 mol L−1 concentration of H2O2 at pH 7 and a temperature of 30 °C. Kinetics of ORG degradation followed the pseudo first order, and almost complete degradation was achieved within 8 h. The effectiveness of the Bi2MoO6/H2O2 photo-Fenton system in degradation reactions is due to the higher number of photo-generated e- available on the catalyst surface as a result of their ability to inhibit recombination of e- and h+ pair.  相似文献   

4.
Manganese(III) sulfato complexes cause the oxidative degradation of methylene blue and its partially and fully N-demethylated derivatives, azure B and thionine dyes, respectively, in sulfuric acid media. The reaction proceeds through a colored reactive organic radical generated in the first stage via one-electron oxidation of the starting material, leading to a mixture of N-demethylated and/or deaminated species. The rates of formation of the methylene blue and azure B radicals are much higher than those of their further decomposition, whereas the generation of the thionine radical is much slower than its immeasurably fast decay. The kinetics of decomposition of all three dyes and the methylene blue and azure B radicals were studied spectrophotometrically under isolation conditions at 298 K. The first stage of each reaction proceeds according to a second-order rate expression, being first order in the dyes and in the manganese(III) concentrations. Dependence of the pseudo-first-order rate constants on the oxidant concentration for the second stage exhibits a saturation effect under the applied conditions. It is postulated that electron transfer takes place between the [Mn(SO4)3]3− complex and the protonated form of the dye. The reactivity order of the dyes as determined from the second-order rate constants for the first reaction stage corresponds to the order of their HOMO energies.  相似文献   

5.
H+-restacked nanosheets and nanoscrolls peeled from K4Nb6O17 display different structures and surface characters. The two restacked samples with increased surface areas have an amazing visible-light response for the photodegradation of dyes, which is superior to commercial TiO2 (P25) and Mb2O5. By comparison, H+/nanosheets have a relatively faster photodegradation rate originated from large and smooth basal plane. The work reveals that dye adsorbed on the unfolded nanosheets can effectively harvest sunlight. Due to facile preparation, low-cost and high photocatalytic efficiency, H+/nanosheets and H+/nanoscrolls might be used for the visible light-driven degradation of organic dyes as a substitute for TiO2 in industry.  相似文献   

6.
In this study, polyaniline-titanium dioxide (PAni-TiO2) nanocomposite has been prepared and was utilized as an effective catalyst for photodegradation of methylene blue (MB) dyes from aqueous solution. Adsorption characteristic on the PAni-TiO2 surface and the aqueous solubility of the dyes also play an important role in the photodegradation of dye. Adsorption and photodegradation process occurs simultaneously on the surface of the catalyst at first adsorption occurs (21.5%) on the outer surface of the catalyst and then photodegrade the material up to (66.5%). In reaction mechanism OH· makes the vital role to the degradation of methylene blue and its intermediates. To know the surface and stability of the photocatalyst, it was characterized by FTIR, TEM, TGA–DTA, XRD, UV-vis spectrophotometer, and SEM analysis. Kinetic data indicate that up to 20 minutes photodegradation rates usually follows the pseudo-first-order reaction. After 20 minutes, it follows the Langmuir-Hinshelwood (LH) kinetics. Photo reactivity of PAni-TiO2 was studied with pH of solution, dosage of photocatalyst and concentration of dye. The reaction rate constant (r) and equilibrium binding constant (K) values were incredibly significant than other catalyst.  相似文献   

7.
Photocatalytic degradation of the reactive triazine dyes Reactive Yellow 84 (RY 84), Reactive Red 120 (RR 120), and Reactive Blue 160 (RB 160) on anatase phase N-doped TiO2 in the presence of natural sunlight has been carried out in this work. The effect of experimental parameters like initial pH and concentration of dye solution and dosage of the catalyst on photocatalytic degradation have also been investigated. Adsorption of dyes on N-doped TiO2 was studied prior to photocatalytic studies. The studies show that the adsorption of dyes on N-doped TiO2 was high at pH 3 and follows the Langmuir adsorption isotherm. The Langmuir monolayer adsorption capacity of dyes on N-doped TiO2 was 39.5, 86.0, and 96.3 mg g?1 for RY 84, RR 120, and RB 160, respectively. The photocatalytic degradation of the dyes follows pseudo first-order kinetics and the rate constant values are higher for N-doped TiO2 when compared with that of undoped TiO2. Moreover, the degradation of RY 84 on N-doped TiO2 in sunlight was faster than the commercial Aeroxide® P25. However, the P25 has shown higher photocatalytic activity for the other two dyes, RR 120 and RB 160. The COD of 50 mg l?1 Reactive Yellow-84, RR 120 and RB 160 was reduced by 65.1, 73.1, and 69.6 %, respectively, upon irradiation of sunlight for 3 h in the presence of N-doped TiO2. The photocatalyst shows low activity for the degradation of RY 84 dye, when its concentration was above 50 mg l?1, due to the strong absorption of photons in the wavelength range 200–400 nm by the dye solution. LC–MS analysis shows the presence of some triazine compounds and formimidamide derivatives in the dye solutions after 3 h solar light irradiation in the presence of N-doped TiO2.  相似文献   

8.
In this paper, ceramic plates were used as a support of TiO2 nanoparticles for photocatalytic decolorization of a mixture of three dyes. The three textile dyes (C.I. Basic Red 46, C.I. Basic Blue 3 and Malachite Green) were quantified simultaneously during the photocatalytic degradation process. The partial least squares modeling was successfully applied for the multivariate calibration of the spectrophotometric data. Also, the central composite design has been applied to the optimization of photocatalytic decolorization of the dye solution containing three dyes using an immobilized UV/TiO2 process. The optimum initial concentration of three dyes, reaction time, and UV light intensity were found to be 5 mg/L, 240 min, and 47.2 W/m2, respectively. The chronic phytotoxicity of mixture of dyes was evaluated using aquatic species Spirodela polyrhiza (S. polyrhiza) prior to and after photocatalysis. The phytotoxicity results revealed that the photocatalysis process could effectively reduce the phytotoxicity of the dyes from their aqueous solutions.  相似文献   

9.
Molecular imprinted polymer for determination of malachite green (MG) and fuchsine basic (FU) dyes by spectrophotometry has been used, to develop a novel simultaneous extraction and preconcentration method. Molecularly imprinted layer-coated nano-alumina (MIP@Nano-Al2O3) as adsorbent was prepared by surface molecular imprinting technique, and characterised by FTIR spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis (EDAX) and thermogravimetric analysis (TGA). The method is based on simultaneous extraction of MG and FU dyes from aqueous solution by using molecularly imprinted polymer and measuring the absorbance at 617 and 546 nm for MG and FU, respectively. Parameters which affect the extraction efficiency such as pH, volume of eluent and amount of adsorbent were investigated and optimised. Linear calibration curves were obtained in the range of 2–750 ng mL?1 for MG and 1–240 ng mL?1 for FU under optimum conditions. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.655 and 0.245 ng mL?1 (n = 10) for MG and FU, respectively. The relative standard deviation (RSD) for 100 ng mL?1 of MG and FU was 2.35 and 3.06% (n = 7), respectively. The method was applied to the simultaneous determination of the dyes in different seafood and environmental water samples.  相似文献   

10.
The photocatalytic procedure is one of the most favorable methods for the elimination of poisonous organic dyes to achieve clean drinking water. In this research, a fast sonochemistry method was accomplished to attain Er2Cu2O5 (ECO) nanoparticles with a progressive photo-degradation catalytic routine. Tetraethylenepentamine (TEPA) was operated as both alkaline and complexing agents to control growth of designed nuclei due to the formation of hydrogen bonds between active surface groups of TEPA and nuclei and, lastly stop nano-product accumulation. The ultrasonic time and power factors in sonochemistry reaction were improved to control the final nanostructures properties. The surface features of products were measured via diverse characterization systems of spectroscopic and microscopic. The elimination of dissimilar artificial dyes was carried out through Er2Cu2O5 nanoparticle catalysts. The outcome of altering of artificial pollutant, pollutant concentration, scavenger, nano-catalyst dosage and solution pH was titled on the proficiency of nano-catalyst utility. Optimized Er2Cu2O5 nanoparticles have an efficiency of 97% for degradation of erythrosine dye in an acidic medium. The possible mechanism of deletion dye by photocatalytic purpose was studied and concluded that ?O2 radicals help UV-degradation of contamination.  相似文献   

11.
V. Gómez  M.P. Callao 《Talanta》2007,71(3):1393-1398
A sequential injection (SI)-DAD spectrophotometric method to control the exhaustion of dyes in a mixture of three dyes from a tanning industry process has been developed. It is based on an interdiffusion process of the sample and reagents which leads to a gradual fall in pH through the channel to the detector recording a data matrix. The aim of this paper is to develop a second-order calibration model that is unaffected by interferents by applying multivariate curve resolution with alternating least squares (MCR-ALS). We obtained a linear calibration in the 5-30 mg l−1 range with a correlation coefficient of 0.999 for each dye with detection limits of 2.6, 3.9 and 2.1 mg l−1 for Acid Red, Acid Brown and Acid Orange, respectively. The simultaneous determination of the three dyes from tanning samples showed a satisfactory precision for the three analytes. The method has been validated comparing the concentration of some spiked samples with the expected concentration using a t-paired test. When we used this method to study the exhaustion of dyes, we found that there were several stages in this process. These data may be the key to optimising the exhaustion process.  相似文献   

12.
In this work, the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites were prepared by the sol-gel method. Then, they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). Photo-degradation of azo fuchsine (AF) as a model dye under solar light irradiation was studied to evaluate the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites. It was found that the photocatalytic activity of Co- and Fe-doped ZnO composites can be obviously enhanced by upconversion luminescence agent (Er3+: YAlO3). Besides, the photocatalytic activity of Er3+: YAlO3/Fe-doped ZnO is better than that of Er3+: YAlO3/Co-doped ZnO. The influence of experiment conditions, such as the concentration of Er3+: YAlO3, heat-treatment temperature and time on the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites was studied. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+: YAlO3/Co- and Fe-doped ZnO amount on the photocatalytic degradation of azo fuchsine in aqueous solution were investigated in detail. Simultaneously, some other organic dyes, such as Methyl Orange (MO), Rhodamine B (RM-B), Acid Red B (AR-B), Congo Red (CR), and Methyl Blue (MB) were also studied. The possible excitation principle of Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar light irradiation and the photocatalytic degradation mechanism of organic dyes were discussed.  相似文献   

13.
Herein, the spectral and electrochemical characterizations of three different substituted N-phthalimide azo-azomethine (NAA) dyes (L) containing an o-hydroxy group and their NAA-M(II) chelates [M(II): Cu, Ni, Co, Pb] were reported by using UV–Vis and fluorescence spectroscopy and potentiometric and voltamperometric techniques. The pK value of the dyes as well as the stoichiometry and stability of the NAA-metal chelates were studied, and the stoichiometry was found to be mostly 1:2 (ML2) with high complex stability constant values. The sensor activity of N-phthalimide azo-azomethine derivatives toward pH and metal ions has been also investigated and tested for indicator application in acid–base analysis and detection of Cu(II) ions in real samples of surface river water using voltamperometric detection. The results showed that one of the ligands possesses the highest electrochemical response upon binding to copper ions and could be successfully used in the analysis of copper in water at a concentration range of the analyte from 3.7 × 10−7 to 5.0 × 10−6 mol L−1, with analytical characteristics of the method being Sr = 1.5%, LOD = 3.58 µg L−1 and LOQ =11.9 µg L−1  相似文献   

14.
The composition of the polyethylene surface upon treatment in an oxygen plasma and its afterglow was studied by attenuated total reflectance IR spectroscopy and X-ray photoelectron spectroscopy. The oxidation of the surface at the lowest destruction rates was attained upon simultaneous action of excited O2(a1Δg) and ground-state oxygen molecules. However, O(3 P) atoms are involved in both the formation of oxygen-containing groups and their destruction accompanied by polymer degradation.  相似文献   

15.
In this work, the Er3+:Y3Al5O12 as up-conversion luminescence agent was mixed with TiO2 and the corresponding Er3+:Y3Al5O12/TiO2 composite films were prepared on the one-sided surface of treated sheet glass through sol-gel dip-coating method. The prepared Er3+:Y3Al5O12/TiO2 composite films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Their photocatalytic activities were examined through the degradation of some organic dyes under visible-light irradiation. The degradation process of organic dyes was monitored by UV-Vis spectrophotometer. Furthermore, some main influence factors on the visible-light photocatalytic activity of Er3+:Y3Al5O12/TiO2 composite film such as heat-treatment temperature and heat-treatment time were studied. The results indicate that three layer Er3+:Y3Al5O12/TiO2 composite films with one Er3+:Y3Al5O12/TiO2 composite film (as first layer close to sheet glass) and two pure TiO2 film (as second and third layers) display a higher visible-light photocatalytic activity during photocatalytic degradation of Azo Fuchsine. In addition, the results showed that the visible-light photocatalytic activity of Er3+:Y3Al5O12/TiO2 composite film related to the layer number and layer sequence on the sheet glass. Perhaps, the research results may offer some meaningful references for developing solar energy continuous flow wastewater treatment reactor.  相似文献   

16.
由于ZnCr-LDH纳米粒子具有良好的光催化性能,但极易团聚,在一定程度上制约了它在光催化领域的应用.将水滑石制成核-壳复合材料可以避免粒子团聚,改善其单分散性和稳定性,从而提高光催化活性.本文设计了一种水滑石/海泡石(Sep@LDH)纳米复合材料作为光催化剂,以甲基橙(MO)和亚甲基蓝(MB)混合溶液模拟有机染料废水,进行光催化反应.通过XRD,SEM,UV-Vis DRS,PL,TG-DTG和BET/BJH,证明了水滑石成功的生长在海泡石的表面,通过光催化实验详细研究了Sep@LDH纳米复合材料的光催化性能及光降解反应机理.采用共沉淀制备了不同Zn/Cr摩尔比的水滑石纳米材料,对水滑石进行优化,结合表征分析,发现摩尔比为1的ZnCr-LDH其结晶度、层间规整度高,禁带宽度最窄(2.30 eV)和光致发光性能最佳.因而用作后续复合材料的制备.另一方面,我们以酸活化的海泡石(Sep)为载体,采用原位生长法成功制备了一种新型的水滑石/海泡石(Sep@LDH)光催化剂,研究了海泡石的添加量对复合材料性能的影响.结果表明,Sep含量对复合材料形貌、粒径大小、结构以及光学性质影响较大.其中,样品Sep_4@LDH(海泡石添加量为4 g),比表面积最大,因而光催化效率最高.降解动力学结果表明,染料的光降解过程遵循准一级动力学模型.我们通过对活性物种(·OH,h~+,·O_2~-)的考察,研究了光催化降解机理.结果表明,·OH在光降解过程中起着至关重要的作用.Sep_4@LDH复合材料循环使用5次后,MO和MB的光降解率依然分别可以达到86.2%和84.9%,表现出较高的稳定性.  相似文献   

17.

To enhance the removal of trichloroacetic acid (TCA) by anodic contact glow discharge electrolysis (CGDE), the combined degradation of TCA by the action of anodic CGDE, denoted anodic degradation, and normal electrolytic processes at the cathode, denoted cathodic degradation, was investigated. Here, this overall process is termed simultaneous degradation. Compared to anodic degradation, in simultaneous degradation, the reduction rates for TCA and total organic carbon (TOC) increased from 65.32% and 62.03% to 91.82% and 73.03%, respectively. Meanwhile, the dechlorination rate rose from 64.6 to 80.12%. For simultaneous degradation, the disappearance of TCA, the reduction in the TOC, and the dechlorination of TCA, followed first-order kinetics. The reaction intermediates were detected and, based on the intermediates and the observed kinetics, the effects of the simultaneous degradation of TCA, TOC, and dechlorination of TCA are discussed. The cathode materials, length of the anode dipped into the electrolyte, and Pd loading on the Ni cathode all affected the simultaneous degradation of TCA significantly. The effect of the addition of Fe2+ was also investigated. The additive and synergistic effects of the combination of anodic and cathodic degradations on simultaneous degradation are discussed. Based on these results, an analysis of the degradation of TCA suggests that ·OH and ·H/e ?aq generated by the action of anodic CGDE, as well as the ·Hads generated on the Pd-loaded Ni cathode surface, are the key species responsible for the dechlorination of TCA. Furthermore, possible mechanistic routes for the simultaneous degradation of TCA are proposed.

  相似文献   

18.
Simultaneous biosorption properties of three cationic dyes (Methylene blue, Crystal violet and Safranin) on Sargassum glaucescens were studied. In the most of previous papers in the field of dye biosorption, one dye or dyes with nearly separate spectra were used and dye concentration was determined by Beer’s law at different λ max. Significant of this study is application of dyes with highly overlapped spectra (as many real situations) that their concentrations can be determined by chemometric methods. Plackett–Burman design was applied to identify the most significant factors, Box–Behnken design was used to determine optimal conditions, and principal component-wavelet neural network was used for the simultaneous determination of dye concentrations in ternary solutions. The optimum biosorption conditions were determined as dye concentration 10?4 mol L?1, biosorbent dosage 0.1 g L?1 and biosorbent particle size 0.188 µm. At this condition, maximum biosorption capacity was 0.80 mmol g?1. The biosorption process was slightly slower in the ternary system comparing with single system which was related to competition phenomena between dyes. It was found that the overall biosorption data were described by the pseudo-second-order kinetic model. Fourteen isotherm models were applied to experimental data, and it was concluded that Hill model had the best correlation.  相似文献   

19.
Photophysical processes and photochemical reactions in the N-ammonioalkyl derivatives of the azacrown-containing styryl dyes and their complexes with lead and barium perchlorates in MeCN and CH2Cl2 were studied by 1Н NMR spectroscopy, absorption spectroscopy, luminescence spectroscopy, laser kinetic spectroscopy, and quantum chemistry. Molecules of the styryl dyes and their complexes are able to undergo normal (fast) and delayed fluorescence and trans–cis-photoisomerization. The molecules in the triplet state participate in degradation processes of the electron excitation energy.  相似文献   

20.
The present study deals with the synthesis and characterization (FE‐SEM, particle size distribution, XRD and point of zero charge) SnO2/(NH4)2‐SnCl6 nanocomposites loaded on activated carbon (SnO2/(NH4)2‐SnCl6‐NCs‐AC) and its subsequent application for the simultaneous removal of Methylene Blue (MB) and Orange G (OG) from aqueous solution. Response surface methodology (RSM) based on central composite design (CCD) give trend of influencing responses with respect to five parameters such as contact time (X1), OG concentration (X2), MB concentration (X3), adsorbent mass (X4) and pH (X5). In later stage following recognition of significant variables and interaction, quadratic model generated which are able to predict the dyes removal in different conditions. Justification and selection of significant terms was conducted based on analysis of variance and Fisher's F‐test Optimal value of contact time, OG concentration, MB concentration, adsorbent mass and pH were set at 4.0 min, 10 mg l?1, 20 mg L?1, 0.015 g and 6.0, respectively, which lead to achievement of best experiment removal percentage of 97.0 and 99.5% OG and MB respectively, from their binary solutions. The whole experimental data follow pseudo‐first‐order and pseudo‐second‐order rate equations. The fitting experimental data to more available conventional model like Langmuir, Freundlich, Temkin and Dubinin‐Radushkevich isotherm models revel more ability of Langmuir model (with R2 > 0.997) for explanation of system in equilibrium. The adsorption efficiency remained high even after the five cycle of reuse (99.76% and 95.56% for MB and OG, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号