首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
采用浸渍沉淀法制备出WO3-碳纳米管(WO3-CNTs)纳米复合材料, 微波辅助乙二醇法在其表面负载活性成分Pt, 得到纳米Pt/WO3-CNTs 催化剂. 采用X射线衍射(XRD), 透射电子显微镜(TEM)和X射线光电子能谱(XPS)等测试手段对催化剂的结构和形貌进行表征, 结果表明Pt 纳米粒子为面心立方晶体结构, 粒径大小在3-5 nm之间, 均匀地分布在WO3-CNTs 纳米复合材料表面, 同时发现催化剂中的Pt 主要以金属态的形式存在. 采用循环伏安和计时电流法研究了在酸性溶液中Pt/WO3-CNTs 催化剂对甲醇的电催化氧化性能, 结果表明Pt/WO3-CNTs 催化剂比用硝酸处理的碳纳米管载铂催化剂(Pt/CNTs)对甲醇呈现出更高的电催化氧化活性和抗CO中毒性能.  相似文献   

2.
采用水热法和牺牲模板法相结合制备具有中空树枝结构的三氧化钨载体(d-WO3),在其表面进一步负载活性成分Pt,得到纳米Pt/d-WO3复合催化剂。采用X射线粉末衍射(XRD)、透射电镜(TEM)和比表面积和孔结构分析(BET)等对催化剂的形貌和结构进行了表征。结果表明,三氧化钨具有长6 μm和宽2 μm的中空树枝状结构,孔径分布主要集中在20~120 nm,比表面积为24 m2/g,平均粒径为7.2 nm的Pt纳米粒子均匀分布在其表面。采用循环伏安和计时电流法研究了Pt/d-WO3催化剂在酸性溶液中对甲醇的电催化氧化性能。结果表明,Pt/d-WO3催化剂比Pt/C和Pt/WO3催化剂对甲醇有更高的电催化氧化活性和稳定性。d-WO3所具有的中空介孔结构和双功能作用机理有利于甲醇在铂表面的直接脱氢氧化过程。  相似文献   

3.
以原位化学聚合的聚乙酰苯胺/多壁碳纳米管(PAANI-MWCNTs)复合纳米材料作为载体,采用硼氢化钠还原法将Pt纳米粒子担载到PAANI-MWCNTs复合纳米材料表面,制备了Pt/PAANI-MWCNTs复合纳米催化剂.样品的结构和形貌用紫外-可见(UV-Vis)光谱、拉曼光谱、扫描电镜(SEM)、透射电镜(TEM)和X射线衍射(XRD)进行了表征.结果表明,聚乙酰苯胺与碳纳米管之间存在较强的π-π相互作用,使其能牢固地吸附于多壁碳纳米管表面,对碳纳米管的结构完整性和导电性有一定的改善作用.同时,金属Pt纳米颗粒较为均匀地分散在PAANI-MWCNTs表面,粒径分布范围较窄.采用循环伏安法和计时电流法在酸性溶液中研究了Pt/PAANI-MWCNTs催化剂对甲醇的电催化氧化活性,结果表明Pt/PAANI-MWCNTs复合纳米催化剂比用混酸处理的碳纳米管载铂催化剂对甲醇呈现出更高的电催化氧化活性和更好的抗中毒能力及稳定性.  相似文献   

4.
碳纳米管以其独特的结构,良好的电性能和机械性能吸引了众多的关注~([1]),被认为是潜在的异相催化剂载体 ~([2]).近来关于碳纳米管负载催化剂的合成及其在异相催化中应用的研究已见报道~([3]).  相似文献   

5.
喷雾干燥法制备具有三维结构的氧化石墨烯(PGO),在其表面进一步负载活性成分Pt,得到纳米Pt/PGO复合催化剂。采用X射线粉末衍射(XRD)、透视电镜(TEM)和扫描电镜(SEM)等对催化剂的形貌和结构进行表征。结果表明,PGO具有类似于长4-6μm和宽2.0-3.0μm的三维纸团结构,平均粒径为4.2 nm的Pt纳米粒子均匀分布在其表面。采用循环伏安和计时电流法研究了在酸性溶液中催化剂对甲醇的电催化氧化性能。结果表明,Pt/PGO催化剂对甲醇呈现出更高的电催化氧化活性和稳定性。PGO所具有的三维结构和双功能作用机理有利于甲醇在铂表面的电催化氧化过程的发生。  相似文献   

6.
0引言Pt金属是直接甲醇燃料电池(DMFC)常用的催化剂犤1~3犦。为了尽可能减少Pt金属用量,提高Pt的分散度,人们总是选择具有高表面积的基质,如石墨、碳黑、活性碳、分子筛、质子交换膜等,作为Pt金属的载体犤3~5犦。最初,人们以为载体的作用仅仅是提供表面积和多孔气体扩散电极的骨架,使Pt微粒可以有更大的比表面积与反应物接触,但是现在普遍认为犤1犦,当Pt金属负载在活性炭上时,它们中的催化性能有一部分应归结于金属和载体之间的相互作用,因此,载体的形貌及物理化学性质直接影响着催化剂对甲醇的电催化氧化活性。碳纳米管(CNTs)由于…  相似文献   

7.
铂催化剂;碳纳米管;甲醇;直接甲醇燃料电池  相似文献   

8.
本文报道了一种方便地构建铂/酞菁/碳纳米管(Pt/Pc/CNTs)复合纳米催化剂的新方法:先通过简单的超声处理将酞菁分子(Pc)修饰至碳纳米管表面,随后采用乙二醇还原法将铂纳米粒子固载到酞菁修饰的碳纳米管表面,形成Pt/Pc/CNTs复合纳米催化剂。X射线衍射(XRD)和透射电镜(TEM)结果表明金属铂纳米颗粒均匀地分散在碳纳米管表面,尺寸约5 nm。采用UV-Vis、FTIR和Raman等手段研究了这种复合纳米催化剂的构建过程,结果表明酞菁分子与碳纳米管之间存在较强的π-π相互作用,使其能牢固地吸附于碳  相似文献   

9.
采用喷雾干燥法和焙烧处理制备中空介孔三氧化钨微球(HMTTS),在其表面进一步负载活性成分Pd,得到纳米Pd/HMTTS复合催化剂. 采用X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等对催化剂的形貌和晶型结构进行了表征. 结果表明,Pd纳米粒子为面心立方晶体结构,均匀地分布在HMTTS表面. 采用循环伏安和计时电流法研究了在酸性溶液中Pd/HMTTS 催化剂对甲酸的电催化氧化性能,结果表明Pd/HMTTS 催化剂比普通的三氧化钨载钯催化剂(Pd/WO3)对甲酸呈现出更高的电催化氧化活性和稳定性.HMTTS独特的中空介孔结构和表面特性以及氢溢流效应有利于甲酸在钯表面的直接脱氢氧化过程的发生.  相似文献   

10.
采用表面修饰技术将WO_3晶粒引入到氧化石墨烯(GO)表面,通过硼氢化钾还原法制备了载钯催化剂Pd/WO_3-RGO.对催化剂进行了结构和形貌表征,并考察了该催化剂对甲酸氧化的电催化性能.结果表明,Pd/WO_3-RGO催化剂由石墨烯、单斜态WO_3和立方面心Pd晶粒组成,Pd颗粒均匀分散在载体上;使用Pd/20%WO_3-RGO催化剂电极时的甲酸氧化最大峰电流密度大幅增加,是Pd/RGO催化剂电极甲酸氧化峰电流密度的2.5倍;Pd/WO_3-RGO催化剂稳定性大大增强,且具有更加优异的抗CO中毒能力;Pd晶粒与WO_3晶粒的相互交叠有利于它们之间的催化协同效应,增强催化剂的催化性能.  相似文献   

11.
探索了一种适用于Pt/CNTs催化剂的纯化方法.利用比表面积测定、X射线衍射(XRD)、透射电子显微镜(TEM)和电化学等手段进行了表征.研究结果表明,经该方法纯化的CNTs作为载体制备的阳极催化剂表现出明显优于相应的混酸氧化法纯化的CNTs为载体的催化剂催化性能.  相似文献   

12.
吕艳卓  徐岩  陆天虹  邢巍  张密林 《化学学报》2007,65(16):1583-1587
直接甲醇燃料电池(DMFC)由于具有较多的优点而受到广泛的关注. 但是碳载Pt (Pt/C)阳极催化剂电催化活性低是限制其应用的一个主要问题. 为了提高Pt/C催化剂对甲醇氧化的电催化性能, 分别用CO2, 空气, H2O2或HNO3对常用作为载体的Vulcan XC-72碳黑进行预处理. 结果表明, 在用CO2, 空气, HNO3, H2O2处理的及未处理的碳黑作载体制得的Pt/C催化剂电极上, 甲醇氧化峰的峰电流密度顺序为39, 33, 32, 20和18 mA•cm-2, 表明用CO2处理的碳载体制备的Pt/C催化剂对甲醇氧化有最好的电催化活性和稳定性. 其主要原因是用CO2处理能减少碳黑表面的含氧基团和增加石墨化程度, 而使碳黑的电阻降低及Pt粒子在碳黑上的分散性变好.  相似文献   

13.
为认识孔隙度增加对甲醇电氧化的影响, 将熔盐法制备的La2O3颗粒与Pt/CNTs(碳纳米管)预混合然后用HClO4溶掉La2O3颗粒, 从而增加了Pt/CNTs催化层的孔隙度. 扫描电子显微镜(SEM)观察表明, 该处理可以形成孔结构. 用循环伏安和计时电流实验考察了孔隙度增加对甲醇电氧化的影响, 结果表明甲醇电氧化电流可增加57%. 分析认为, 电流增加的原因是由于多孔催化层中甲醇更易于到达Pt催化剂表面进行电氧化. 该研究表明, 通过在催化层中预混-溶解La2O3来增加孔隙是一种改善催化层性能的有效方法.  相似文献   

14.
碳载Pt和PtRu催化剂的甲醇电氧化比较   总被引:3,自引:0,他引:3  
利用电化学方法对商用Pt/C和PtRu/C催化剂在酸性介质中的甲醇电氧化进行了比较研究.动电位和恒电位氧化实验结果皆表明PtRu/C比Pt/C对甲醇电催化活性高.PtRu合金的形成不仅改变了催化剂表面对氢的吸附性质,而且使氧化物还原峰电位向阴极方向移动.Ru与甲醇的相互作用为温度活化过程,需要较高的温度.  相似文献   

15.
Carbon nanotubes (CNTs) supported Pt-Ru and Pt-Ru-Ni catalysts were prepared by chemical reduction of metal precursors with sodium borohydride at room temperature. The crystallographic properties and composition of the catalysts were characterized by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis, and the catalytic activity and stability for methanol electro-oxidation were measured by electrochemical impedance spectroscopy (EIS), linear sweep voltammetries (LSV), and chronoamperometry (CA). The results show that the catalysts exhibit face-centered cubic (fcc) structure. The particle size of Pt-Ru-Ni/CNTs catalyst is about 4.8 nm. The catalytic activity and stability of the Pt-Ru-Ni/CNTs catalyst are higher than those of Pt-Ru/CNTs catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号