首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this review,a group of two-dimensional(2D) hydrogen-bonded supramolecular networks developed in our laboratory are discussed.Our attention is mainly focused on:(1) recognition of Fe3+ through twocomponent molecular networks;(2) site-selective fabrication of 2D fullerene arrays;and(3) fabrication of the nanoporous structure regulated by photoisomerization reaction process.It is envisioned that special supramolecular nanostructures,through H-bonding interactions,can be constructed or reconstructed to be further investigated toward the research of multi-component systems,molecule recognition,single molecular switches,and host-guest supramolecular chemistry.  相似文献   

2.
Supramolecular polymers constructed by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host-guest interactions have received increasing attention due to their elegant structures,outstanding properties,and potential applications.Hydrogen bonding endows these supramolecular polymers with good adaptability and reversibility,while macrocyclic host-guest interactions give them good selectivity and versatile stimuli-responsiveness.Therefore,functional supramolecular polymers fabricated by these two highly specific,noninterfering interactions in an orthogonal way have shown wide applications in the fields of molecular machines,electronics,soft materials,etc.In this review,we discuss the recent advances of functional supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydroge n bonding and host-guest interactions.In particular,we focus on crown ether-and pillar[n]arene-based supramolecular polymers due to their compatibility with multiple hydrogen bonds in organic solution.The fabrication strategies,interesting properties,and potential applications of these advanced supramolecular materials are mainly concerned.  相似文献   

3.
Aqueous hybrid soft nanomaterials consisting of plural supramolecular architectures with a high degree of segregation (orthogonal coexistence) and precise hierarchy at the nano- and microscales, which are reminiscent of complex biomolecular systems, have attracted increasing attention. Remarkable progress has been witnessed in the construction of DNA nanostructures obtained by rational sequence design and supramolecular nanostructures of peptide derivatives through self-assembly under aqueous conditions. However, orthogonal self-assembly of DNA nanostructures and supramolecular nanostructures of peptide derivatives in a single medium has not yet been explored in detail. In this study, DNA microspheres, which can be obtained from three single-stranded DNAs, and three different supramolecular nanostructures (helical nanofibers, straight nanoribbons, and flowerlike microaggregates) of semi-artificial glycopeptides were simultaneously constructed in a single medium by a simple thermal annealing process, which gives rise to hybrid soft nanomaterials. Fluorescence imaging with selective staining of each supramolecular nanostructure uncovered the orthogonal coexistence of these structures with only marginal impact on their morphology. Additionally, the biostimuli-responsive degradation propensity of each supramolecular architecture is retained, and this may allow the construction of active soft nanomaterials exhibiting intelligent biofunctions.  相似文献   

4.
During the past few years,regulation and controlling of the two-dimension(2D)self-assembled supramolecular structure on surface have drawn increasing attention in nanoscience and technology. External stimuli have been widely used to regulate these 2D nanostructures.Among various external stimuli approaches,photo-regulation as one of the most outstanding means of regulation has been extensively studied because different wave bands can lead to molecular conformation variation and new bonds to gain new molecules.In this review,the photo-regulated self-assembled structure on solid surface as well as the photo-reactions of different molecules substituted with photo-sensitive groups are introduced to give us an insight into on-surface photochemistry,which plays an important role on the nano-devices fabrication.Notably,these photo-sensitive behaviors as well as the formed structures on surface were probed at sub-molecule level by unique scanning tunneling microscopy(STM)technique.  相似文献   

5.
Host-guest complexes between native cyclodextrins (α-, β- and γ-CD) and hybrid Lindqvist-type polyoxovanadates (POVs) [V6O13((OCH2)3C−R)2]2– with R = CH2CH3, NO2, CH2OH and NH(BOC) (BOC = N-tert-butoxycarbonyl) were studied in aqueous solution. Six crystal structures determined by single-crystal X-ray diffraction analysis revealed the nature of the functional R group strongly influences the host–guest conformation and also the crystal packing. In all systems isolated in the solid-state, the organic groups R are embedded within the cyclodextrin cavities, involving only a few weak supramolecular contacts. The interaction between hybrid POVs and the macrocyclic organic hosts have been deeply studied in solution using ITC, cyclic voltammetry and NMR methods (1D 1H NMR, and 2D DOSY, and ROESY). This set of complementary techniques provides clear insights about the strength of interactions and the binding host-guest modes occurring in aqueous solution, highlighting a dramatic influence of the functional group R on the supramolecular properties of the hexavanadate polyoxoanions (association constant K1:1 vary from 0 to 2 000 M−1) while isolated functional organic groups exhibit only very weak intrinsic affinity with CDs. Electrochemical and calorimetric investigations suggest that the driving force of the host-guest association involving larger CDs (β- and γ-CD) is mainly related to the chaotropic effect. In contrast, the hydrophobic effect supported by weak attractive forces appears as the main contributor for the formation of α-CD-containing host-guest complexes. In any cases, the origin of driving forces is clearly related to the ability of the macrocyclic host to desolvate the exposed moieties of the hybrid POVs.  相似文献   

6.
Hydrogen bonds with high selectivity and directionality are significant in harnessing molecules to form 2D supramolecular nanostructures. The competition and reorganization of hydrogen bond partners determine the ultimate molecular assembly and pattern in a 2D supramolecular system. In this study, multicomponent assemblies of a monodendron (5-benzyloxy-isophthalic acid derivative, BIC) and pyridylethynyl derivatives [1,4-bis(4-pyridylethynyl)-2,3-bis-dodecyloxy-benzene (PBPC12) and 1,4-bis(4-pyridylethynyl)-2,3-bis-octadecyloxy-benzene (PBPC18)] have been studied by scanning tunneling microscopy (STM) on a graphite surface. BIC molecules are able to associate with PBPC12 and PBPC18 molecules to induce the rearrangement of hydrogen bond partners and form coassembly structures. Interestingly, BIC acts as a template molecule in the coassembly process, and these multicomponent structures exhibit similar structural features to the assembly structures of BIC itself. The structural details of the coassembled structures are revealed by high-resolution STM images, and their relationship with the original BIC assemblies is discussed. These results provide important insights into the design and fabrication of hydrogen-bond-directed multicomponent molecular nanostructures on solid surfaces.  相似文献   

7.
Different types of cyclodextrins (CDs) have been tested as mediators for the water phase transfer of organic-capped CdS nanocrystals (NCs), and alphaCD has been demonstrated to be the most effective system. The formation of a complex based on alphaCDs and colloidal NCs has been considered to be responsible for the phase transfer process and extensively investigated by optical, structural, and calorimetric measurements, as a function of the experimental parameters (pH and NC and CD concentration). A mechanism for the complexation phenomena has been suggested. The fabrication of 2/3 D supramolecular architectures has been proposed according to two different strategies. First, a layer-by-layer procedure has been used to obtain multilayered structures where polyelectrolyte layers have been intercalated with negatively charged alphaCD-CdS NC complexes by exploiting electrostatic interaction between polyelectrolyte and cyclodextrin OH groups. Second, a monolayer of CdS NCs has been deposited onto a self-assembled monolayer of sulfated CDs, thus combining the use of an electrostatic-force-based approach and host-guest chemistry. The important role played by host-guest interactions has then been revealed.  相似文献   

8.
In this paper, we demonstrate the self-assembly of ionic liquids (ILs)-stabilized Pt nanoparticles into two-dimensional (2D) patterned nanostructures at the air-water interface under ambient conditions. Here, ILs are not used as solvents but as mediators by virtue of their pronounced self-organization ability in synthesis of self-assembled, highly organized hybrid Pt nanostructures. It is also found that the morphologies of the 2D patterned nanostructures are directly connected with the quantities of ILs. Due to the special structures of ILs-stabilized Pt nanoparticles, 2D patterned Pt nanostructures can be formed through the pi-pi stack interactions and hydrogen bonds. The resulting 2D patterned Pt nanostructures exhibit good electrocatalytic activity toward oxygen reduction.  相似文献   

9.
We here report a new approach to develop self-healing shape memory supramolecular liquid-crystalline (LC) networks through self-assembly of molecular building blocks via combination of hydrogen bonding and coordination bonding. We have designed and synthesized supramolecular LC polymers and networks based on the complexation of a forklike mesogenic ligand with Ag+ ions and carboxylic acids. Unidirectionally aligned fibers and free-standing films forming layered LC nanostructures have been obtained for the supramolecular LC networks. We have found that hybrid supramolecular LC networks formed through metal–ligand interactions and hydrogen bonding exhibit both self-healing properties and shape memory functions, while hydrogen-bonded LC networks only show self-healing properties. The combination of hydrogen bonds and metal–ligand interactions allows the tuning of intermolecular interactions and self-assembled structures, leading to the formation of the dynamic supramolecular LC materials. The new material design presented here has potential for the development of smart LC materials and functional LC membranes with tunable responsiveness.

New supramolecular hybrid liquid-crystalline networks exhibiting self-healing and shape memory properties are developed by self-assembly of small components through hydrogen bonding interactions and coordination bonding.  相似文献   

10.
Pillar[n]arene-based amphiphiles,mainly including amphiphilic pillar[n]arenes and supra-amphiphilic pillar[n]arenes,have obtained considerable interests in recent years due to their fascinating chemical structures,various self-assembly behaviors,and widely applications.Thanks to the pillar-like frameworks and the rich host-guest recognitions of the cavities,these amphiphiles can be easily controlled to form dimensional and morphologic assemblies for multiple applications.Compared with traditional linear covalent amphiphiles,the introduction of host-guest recognitions facilitated the preparation and controllability of these supramolecular amphiphilic systems.Moreover,the host-guest recognitions endow the assemblies from pillar[n]arene-based amphiphiles with stimuli-responsive functions.In this mini-review,we summarized the chemical structures,self-assembly features,and the applications of pillar[n]arene-based amphiphiles.However,several research topics of pillar[n]arenebased amphiphiles can be further developed in the future,such as larger cavity amphiphilic pillar[n]arenes,co-assembly with 2 D materials and utilization of the host-guest interactions.  相似文献   

11.
With the elaborate engineering of supra-amphiphiles based on dual charge-transfer interactions, the rational design and programmable transformation of well-defined 1D and 2D nanostructures have been demonstrated. First, H-shaped supra-amphiphiles are successfully obtained on the basis of the directional charge-transfer interactions of naphthalene diimide and naphthalene, which self-assemble in water to form 2D nanosheets. Second, by complexation of the H-shaped supra-amphiphiles with pyrene derivatives, the 2D nanosheets transform into ultralong 1D nanofibers. Therefore, this line of research represents a successful example of supramolecular engineering and has enriched its realm.  相似文献   

12.
This review supplied direct insight of host-guest molecule system by using COR as the guest molecule.  相似文献   

13.
Current interest in methods for controllably adding organic molecules to silicon surfaces relates to proposed hybrid silicon-organic devices. It was recently shown that a "self-directed" growth process, requiring only limited scanned probe intervention, has the potential to permit rapid, parallel production of ordered molecular nanostructures on silicon with predefined absolute position, structure, composition, and extent of growth. The hybrid organic-silicon structures formed are bound by strong covalent interactions. In this work, we use scanning tunneling microscopy and density functional theory techniques to show that molecule-surface dispersion interactions enable the growth process and play a crucial role in the final configurations of the nanostructures.  相似文献   

14.
Ionic bonding in supramolecular surface networks is a promising strategy to self-assemble nanostructures from organic building blocks with atomic precision. However, sufficient thermal stability of such systems has not been achieved at metal surfaces, likely due to partial screening of the ionic interactions. We demonstrate excellent stability of a self-assembled ionic network on a metal surface at elevated temperatures. The structure is characterized directly by atomic resolution scanning tunneling microscopy (STM) experiments conducted at 165 °C showing intact domains. This robust nanometer-scale structure is achieved by the on-surface reaction of a simple and inexpensive compound, sodium chloride, with a model system for carboxylate interactions, terephthalic acid (TPA). Rather than distinct layers of TPA and NaCl, angle resolved X-ray photoelectron spectroscopy experiments indicate a replacement reaction on the Cu(100) surface to form Na-carboxylate ionic bonds. Chemical shifts in core level electron states confirm a direct interaction and a +1 charge state of the Na. High-temperature STM imaging shows virtually no fluctuation of Na-TPA island boundaries, revealing a level of thermal stability that has not been previously achieved in noncovalent organic-based nanostructures at surfaces. Comparable strength of intermolecular ionic bonds and intramolecular covalent bonds has been achieved in this surface system. The formation of these highly ordered structures and their excellent thermal stability is dependent on the interplay of adsorbate-substrate and ionic interactions and opens new possibilities for ionic self-assemblies at surfaces with specific chemical function. Robust ionic surface structures have potential uses in technologies requiring high thermal stability and precise ordering through self-assembly.  相似文献   

15.
Microfluidic-NMR spectroscopy has been extended to study the kinetics in supramolecular chemistry and molecular assembly. Kinetics of a multicomponent host-guest supramolecular system containing viologen derivatives, β-cyclodextrins and cucurbit [7]urils are studied by a PMMA based microfluidic chip combined with a dedicated transmission line probe for NMR detection. By combining microfluidic technology with NMR spectroscopy, the amount of material required for a full kinetic study could be minimized. This is crucial in supramolecular chemistry, which often involves highly sophisticated and synthetically costly building blocks. The small size of the microfluidic structure is crucial in bringing the time scale for kinetic monitoring down to seconds. At the same time, the transmission line NMR probe provides sufficient sensitivity to work at low (2 mM) concentrations.  相似文献   

16.
Supramolecular interactions between fullerenes and porphyrins   总被引:2,自引:0,他引:2  
Perdew-Burke-Ernzerhof density functional theory calculations have been carried out to investigate the host-guest interactions for several fullerene-porphyrin supramolecular complexes. The nature of the interactions has been discussed. The fullerene-porphyrin interaction energies for the complexes studied are found to be in the range from -16 to -18 kcal/mol.  相似文献   

17.
The study of hydrogen bonding interactions at the level of functionalized nanoparticles remains highly challenging and poorly explored area. In this work, superparamagnetic iron oxide nanoparticles (SPIONs) were orthogonally functionalized using receptors bearing multiple hydrogen bonding motifs. Pristine SPIONs were modified by wet chemical processes with Hamilton receptors (hosts), or cyanurate-guest molecules linked to phosphonic acid moieties for monolayer functionalization. The modified surfaces were fully characterized and the number of attached ligands on the surface were determined. The host-guest interactions on the interface of modified SPIONs were investigated by using UV-Vis spectroscopic titrations. Functionalized SPIONs demonstrated two to three magnitudes stronger binding affinities as compared to the related molecular interactions in solution due to synergistic effects on complex surface environment. Higher supramolecular binding ratios of host-guest interactions on the modified surface were emerged. These studies provide fundamental insights into supramolecular complexations on the surface at solid-liquid interface systems with applications in engineered nanomaterials, nano-sensing devices, and drug delivery systems.  相似文献   

18.
Fluorescent supramolecular polymer network based on a mono-terpyridine-tethered leaning towerarene, a tetratopic tetraphenylethylene-based guest linker, and zinc ions has been designed and synthesized, showing excellent triple-stimuli responsive property.  相似文献   

19.
A novel amphiphilic supramolecular polymer (ASP) with rigid linear main chain has been constructed by the co-assembly of a rigid amphiphilic monomer and cucurbit[8]uril (CB[8]) in water, driven by CB[8]-based host-guest interactions. The ASP could further self-assemble into well-defined architectures including nanotubes and 2D films, depending on its concentration. Moreover, pH-responsive behavior of the ASP was also observed.  相似文献   

20.
环糊精及其衍生物的超分子晶体结构研究进展   总被引:13,自引:0,他引:13  
本文对近年来有关环糊精、环糊精衍生物以及它们与各类客体组装成的超分子包合物的晶体结构研究进行的简要概述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号