首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Derivatization with 2,2′-dithiobis(5-nitropyridine) (DTNP) was used to stabilize thiols in field samples and to determine these compounds by liquid chromatography (LC) with ultraviolet detection. Alternatively, the thiols can be regenerated from DTNP derivatives using tributylphosphine (TBP) and derivatized with o-phthalaldehyde (OPA). The DTNP derivatives were stable at pH 5 and 6 for more than 2 weeks in the reaction mixture, but the stability was considerably lower at pH values > 8. Derivatization at pH 6 was routinely done and the reaction was complete within 5 min. The derivatives can be extracted quantitatively on commercial C18 cartridges, which allows several-fold sample enrichment. The cartridge-adsorbed derivatives are stable at 0–5 °C for long periods and, therefore, can be stored for LC separation at a later date. DTNP derivatives of ten low-molecular-weight thiols were separated on a C18 microbore column using gradient elution and a flow-rate of 200 μl min?1. The relative standard deviation based on repeated analyses of standards is about 5% in the range 0.5–2 nM. Without C18 cartridge enrichment, the detection limits of the studied thiols are in the range 50–100 nM. These limits are further reduced by about 100-fold by using the OPA method after regeneration of thiols from the DTNP derivatives using TBP. Applications of the method to coastal sediment pore water and anoxic Black Sea water are illustrated.  相似文献   

2.
The peroxyoxalate chemiluminescence detection of biological thiols combined with high-performance liquid chromatography (HPLC) is described. SH groups of the thiol compounds including glutathione (GSH), cysteine, N-acetylcysteine, cysteamine, and D-penicillamine were labelled with N-[4-(6-dimethylamino-2-benzofuranyl)phenyl]maleimide (DBPM), a specific fluorogenic reagent for SH group. The labelling reaction was carried out at 60 degrees C for 30 min and at pH 8.5 and a sample of the resulting reaction mixture was subjected to HPLC. Five kinds of labelled thiols were separated within 12 min on ODS-80 column (150 x 4.6 mm ID; 5 microns) and detected in the ranges from 500 fmol to 2 pmol/100 microL (cysteamine and N-acetylcysteine), to 3 pmol/100 microL (cysteine) and to 5 pmol/100 microL (GSH and D-penicillamine). The lower detection limits were from 7 fmol (cysteamine) to 113 fmol (GSH) per 100 microL (S/N = 2). The method was applied to the determination of thiols in a rat liver. The amounts of glutathione and cysteine were 1.23 +/- 0.15 mumol/g (n = 5) and 0.15 +/- 0.04 mumol/g (n = 5), respectively.  相似文献   

3.
Cyclic voltammetry of TEMPO in aqueous 0.1 M NaOH in the presence of glutathione (GSH) or cysteine (Cys) indicated the following points: (i) Both of the thiols rapidly formed adducts 3 with oxoammonium ion 1 anodically generated from TEMPO. (ii) 3 generated from GSH entered a succeeding reaction that generated N-oxide anion 2- (the reduced TEMPO). (iii) 3 produced from Cys remained intact over the time scale of voltammetry. A structural feature of GSH was considered to contribute to the observed behavior of this tripeptide. Possible structural features were evaluated by screening various thiols on the basis of whether they provided GSH-like voltammetric results. The 3-mercaptopropionamide group with an amide hydrogen in GSH was determined to be responsible for the observed difference between GSH and Cys. The likely function is to transform 3 from GSH into a 5-imino-1,2-oxathiolane intermediate, thereby releasing 2-. Product analysis for reactions of model thiols representing GSH and Cys with 1 provided support for this argument and suggested that the reaction of GSH or Cys with 1 would produce the corresponding disulfides, regardless of whether a five-membered ring intermediate was formed. The proposed function of the 3-mercaptopropionamide moiety of GSH may provide useful insight for the molecular design of exogenous thiol compounds as novel drugs for the treatment of GSH-depletion-related disorders.  相似文献   

4.
Biological thiols and disulfides in rat and hamster tissues were simultaneously determined by HPLC-fluorescence detection using 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F) and ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F). The coefficients of variation (CV) of the method for reduced glutathione (GSH) and oxidized glutathione (GSSG) in liver and for cysteine (CySH) and cystine (CySSCy) in kidney were less than 3.1%. In 11 tissues of Wistar rats (liver, spleen, heart, lung, stomach, bladder, ovary, uterus, adrenal, kidney and pancreas), only CySH, CySSCy, GSH and/or GSSG were detected. Other thiols and disulfides were at extremely low levels in all samples. Both concentrations of CySH and CySSCy in the livers of old rats (111 weeks old, F344) were significantly higher than those of young rats (8 weeks old) (CySH, 0.246 +/- 0.099 vs 0.130 +/- 0.020 mumol/g; CySSCy, 0.051 +/- 0.027 vs 0.013 +/- 0.002 mumol/g). Administration of N-nitrosobis(2-oxopropyl)amine (BOP), a selective carcinogen of hamster pancreatic cancer, to Syrian golden hamsters (38 weeks old) resulted in the increase in the pancreas of GSH to a level 19 times as high and of GSSG to a level 14 times as high as those in untreated hamsters (GSH, 1.173 +/- 0.272 vs 0.062 +/- 0.017 mumol/g; GSSG, 0.155 +/- 0.063 vs 0.011 +/- 0.001 mumol/g).  相似文献   

5.
Due to the redox properties closely related to numerous physiological and pathological processes, biothiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), have received considerable attention in biological science. On account of the important physiological roles of these biothiols, it is of profound significance to develop sensitive and selective detection of biothiols to understand their biological profiles. In this work, we reported an efficient fluorescent probe, PHPQ-SH, for detecting biothiols in vitro and vivo, based on the phenothiazine-HPQ skeleton, with DNBS (2,4-dinitrobenzenesulfonate) as the response unit. Probe PHPQ-SH exhibited brilliant sensing performances toward thiols, including a large Stokes shift (138 nm), excellent sensitivity (for GSH, LOD = 18.3 nM), remarkable fluorescence enhancement (163-fold), low cytotoxicity, rapid response (8 min), and extraordinary selectivity. Finally, the probe PHPQ-SH illustrated herein was capable of responding and visualizing biothiols in MCF-7 cells and zebrafish.  相似文献   

6.
A Pt–NiCo nanomaterial has been synthesized for developing the sensitive electrochemical determination of biological thiols that include L ‐cysteine (CySH), homocysteine (HCySH), and gluthione (GSH) with high sensitivity and long‐term stability, in which the Pt nanoparticles are well supported on amorphous NiCo nanofilms. The electrochemical oxidation of thiols has been successfully facilitated on the optimized Pt–NiCo nanostructures, that is, two oxidation peaks of CySH have been clearly observed at potentials of +0.06 and +0.45 V. The experimental results demonstrate that the first peak for CySH oxidation may be attributed to a direct oxidation from CySH to L ‐cystine (CySSCy), whereas the second peak possibly results from a sequential oxidation from CySSCy to cysteic acid (CySO3H), together with a direct oxidation of CySH into CySO3H. The enhanced electrocatalytic activities at the Pt23–NiCo nanostructures have provided a methodology to determine thiols at a very low potential of 0.0 V with relatively high sensitivity (637 nA μM cm?2), a low detection limit (20 nM ), and a broad linear range. The striking analytical performance, together with the characteristic properties of the Pt–NiCo nanomaterial itself, including long‐term stability and strong antipoisoning ability, has established a reliable and durable approach for the detection of thiols in liver cancer cells, Hep G2.  相似文献   

7.
This article describes the use of 2,3-naphthalenedicarboxaldehyde (NDA) as a selective probe for the determination of homocysteine (HCys) via fluorescence measurement and laser desorption/ionization mass spectrometry (LDI-MS). The derivatives of three aminothiols-HCys, glutathione (GSH), and gamma-glutamylcysteine (gamma-Glu-Cys)-with NDA under alkaline conditions possess different fluorescence emission characteristics, which allow us to identify them from amines, amino acids, and thiols. By selecting appropriate pH and excitation wavelengths, the limits of detection (LODs) at a signal-to-noise ratio of 3 were 5.2, 1.4 and 16 nM for HCys, GSH and gamma-Glu-Cys, respectively. Additionally, strong UV absorption of the NDA-HCys derivative was further observed at 331 nm; it could be directly detected by LDI-MS with a 337-nm nitrogen laser. Selective detection of HCys has been achieved by conducting the LDI-MS of the NDA-HCys derivative, which was found at m/z 406.9. The lowest detectable concentration of the NDA-HCys derivative in this approach was 500 nM. Quantitative determination of HCys in urine samples was accomplished by LDI-MS. Also, a calibration curve was created from plasma samples spiked with standard HCys (20-100 microM). The experimental results suggest that our proposed methods have great potential in clinical diagnosis and metabolomics application.  相似文献   

8.
Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au8-cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au8-cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols. When 2-PyT is released via the cleavage of disulfide bonds by biothiols, the PET process from the Au8-cluster to 2-PyT is initiated, resulting in fluorescence quenching. The fluorescence intensity was found to decrease linearly with glutathione (GSH) concentration (0–1500 μM) at physiological relevant levels and the limit of detection for GSH was 15.4 μM. Compared to most nanoparticle-based fluorescent probes that are limited to detect low molecular weight thiols (LMWTs; i.e., GSH and cysteine), the ultrasmall Au8-cluster-based probe exhibited less steric hindrance and can be directly applied in selectively and sensitively detecting both LMWTs and high molecular weight thiols (HMWTs; i.e., protein thiols). Based on such sensing platform, the surface-functionalized Au8-cluster has significant promise for use as an efficient nanoprobe for intracellular fluorescence imaging of biothiols including protein thiols in living cells whereas other nanoparticle-based fluorescent probes cannot.  相似文献   

9.
A new high-performance liquid chromatographic (HPLC) method for measuring low molecular weight (LMW) thiol-containing compounds, including cysteine (CysH), glutathione (GSH), N-acetylcysteine (Nac), penicillamine (PA), and 2-mercaptoethanol (2-ME), has been developed by using 5-methyl-(2-(m-iodoacetylaminophenyl)benzoxazole (MIPBO) as fluorescence-labeling reagent. The derivatization and separation conditions have been investigated in detail. Detection limits ranging from 3.5 to 15.0 fmol were achieved for the thiols investigated in a 16 min separation with detection wavelengths 310 and 375 nm for the excitation and emission, respectively. The utility of the proposed method has been validated by measuring CysH in human urine samples.  相似文献   

10.
For the first time a liquid chromatography method with high resolution mass spectrometric detection has been developed for the simultaneous determination all key metabolites of the sulfur pathway in yeast, including all thiolic (cysteine (Cys), homocysteine (HCys), glutathione (GSH), cysteinyl-glycine (Cys-Gly), γ-glutamyl-cysteine (Glu-Cys)) and non-thiolic compounds (methionine (Met), s-adenosyl-methionine (AdoMet), s-adenosyl-homocysteine (AdoHcy), and cystathionine (Cysta)). The developed assay also permits the speciation and selective determination of reduced, oxidized and protein bound fractions of all of the five thiols. Iodoacetic acid (IAA) was chosen as the derivatizing reagent. Thiols were extracted from sub-mg quantities of yeast using hot 75% ethanol. The detection limits were in the range of 1–12 nmol L−1 for standard solution (high femotomole, absolute), except AdoMet (116 nmol L−1), which was unstable. In freshly harvested yeast, most of the thiols were in the reduced forms and low levels of protein-bound GSH and Glu-Cys were found. In a selenium enriched yeast, the thiols were mainly in the oxidized forms, and a significant amount of protein-bound Cys, HCys, GSH, Cys-Gly and Glu-Cys were found. The method was also applied to the metabolic study of the adaptive response of Saccharomyces cerevisiae to hydrogen peroxide, cadmium, and arsenite, and the change in concentration of thiols in the sulfur pathway was monitored over a period of 4 h.  相似文献   

11.
A novel on-line HPLC-DTNB method was developed for the selective determination of biologically important thiols (biothiols) such as l-cysteine (Cys), glutathione (GSH), homocysteine (HCys), N-acetylcysteine (NAC), and 1,4-dithioerythritol (DTE) in pharmaceuticals and tissue homogenates. The biothiols were separated on C18 column using gradient elution, reacted with the postcolumn reagent, DTNB in 0.5% M-β-CD (w/v) solution at pH 8, to form yellow-colored 5-thio-2-nitrobenzoic acid (TNB), and monitored with a PDA detector (λ = 410 nm). With the optimized conditions for chromatography and the post-column derivatization, 40 nM of NAC, 40 nM of Cys, and 50 nM of GSH can be determined. The relative standard deviations of the recommended method were in the range of 3.2–5.4% for 50 μM biothiols. The negative peaks of biothiol constituents were monitored by measuring the increase in absorbance due to TNB chromophore. The detection limits of biothiols at 410 nm (in the range of 0.04–0.58 μM) after post-column derivatization with DTNB + M-β-CD were much lower than those at 205 nm UV-detection without derivatization, and were distinctly lower than those with post-column DTNB alone. The method is rapid, inexpensive, versatile, nonlaborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of biothiol constituents of biological fluids and pharmaceuticals.  相似文献   

12.
The synthesis of a novel Tb(III) luminescent probe for the detection of thiols is presented. The probe 1.Tb, possessing a maleimide moiety, as its sulfhydryl acceptor, was poorly emitting in aqueous pH 7 solution in the absence of a thiol. However, upon addition of thiols such as glutathione (GSH), large enhancements were observed, particularly within the physiological pH range. In contrast no enhancements were observed in the presence of the oxidized form of glutathione (GSSG), except in the presence of the enzyme glutathione reductase and NADPH which enabled 1.Tb to be used to observe the enzymatic reduction of GSSG to GSH in real time.  相似文献   

13.
N-(2-Carbomethoxy-9-methoxy-3-oxo-3H-naphtho[2,1-b]pyran-10-yl)maleimide 2 was designed and synthesized as a new maleimide fluorescent thiol reagent. The optical properties of 2 were investigated with and without the addition of glutathione, GSH. We have found 2 is twice as sensitive as DACM and is of comparable sensitivity to CPM for detection of thiols. The emission maximum for the GSH adduct of 2 is 513 nm which is at longer wavelength than the GSH adducts of both DACM and CPM.  相似文献   

14.
A recently developed method of synthesis of pi-extended porphyrins made it possible to prepare a series of tetrabenzoporphyrins (TBP) with different numbers of meso-aryl substituents. The photophysical parameters of free-bases and Pd complexes of meso-unsubstituted TBP's, 5,15-diaryl-TBP's (Ar2TBP's) and 5,10,15,20-tetraaryl-TBP's (Ar4TBP's) were measured. For comparison, similarly meso-arylsubstituted porphyrins fused with nonaromatic cyclohexeno-rings, i.e. Ar(n)-tetracyclohexenoporphyrins (Ar(n)TCHP's, n = 0, 2, 4), were also synthesized and studied. Structural information was obtained by ab initio (DFT) calculations and X-ray crystallography. It was found that: 1) Free-base Ar4TBP's are strongly distorted out-of-plane (saddled), possess broadened, red-shifted spectra, short excited-state lifetimes and low fluorescence quantum yields (tau(fl) = 2-3 ns, phi(fl) = 0.02-0.03). These features are characteristic of other nonplanar free-base porphyrins, including Ar4TCHP's. 2) Ar2TBP free-bases possess completely planar geometries, although with significant in-plane deformations. These deformations have practically no effect on the singlet excited-state properties of Ar2TBP's as compared to planar meso-unsubstituted TBP's. Both types of porphyrins retain strong fluorescence (tau(fl) = 10-12 ns, phi(fl) = 0.3-0.4), and their radiative rate constants (k(r)) are 3-4 times higher than those of planar H2TCHP's. 3) Nonplanar deformations dramatically enhance nonradiative decay of triplet states of regular Pd porphyrins. For example, planar PdTCHP phosphoresces with high quantum yield (phi(phos) = 0.45, tau(phos) = 1118 micros), while saddled PdPh4TCHP is practically nonemissive. In contrast, both ruffled and saddled PdAr(n)TBP's retain strong phosphorescence at ambient temperatures (PdPh2TBP: tau(phos) = 496 micros, phi(phos) = 0.15; PdPh4TBP: tau(phos) = 258 micros, phi(phos) = 0.08). It appears that pi-extension is capable of counterbalancing deleterious effects of nonplanar deformations on triplet emissivity of Pd porphyrins.  相似文献   

15.
Sensitive, reactive, and hydrophilic fluorogenic reagents for thiols with the benzofurazan skeleton, 4-(N-acetylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (AcABD-F) and 4-(N-trichloroacetylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (TCAcABD-F) have been developed. These reagents reacted with thiols within 10 min at 60 degrees C. AcABD-F and TCAcABD-F themselves do not fluoresce but are strongly fluorescent after the reaction with thiol compounds. The generated derivatives were highly water-soluble, since they dissociated a proton and ionized in the neutral pH region. The derivatives with four biologically important thiol compounds were separated on a reversed-phase HPLC column and detected fluorometrically at 504 nm with excitation at 388 nm. The detection limit attained for homocysteine with AcABD-F was 25 fmol on column (11 nM) (signal-to-noise ratio = 3), and that for glutathione with TCAcABD-F was 45 fmol on column (20 nM).  相似文献   

16.
Because glutathione (GSH) plays a central part in the endogenous defense against UV radiation, an increase in GSH might provide photoprotection. Two agents that increase GSH levels were investigated. Cultured human cells and mouse skin were treated with N -acetylcysteine (NAC) and glutathione ethylester (GSH-Et). After 30 min, the GSH level was determined by HPLC. Photoprotection was assessed by testing the ability of the thiols to scavenge UV-induced reactive intermediates in the same models. As compared to control cells, NAC and GSH-Et increased intracellular GSH in vitro to maximally 144% and 174% respectively. In vitro protection (maximum 23% for NAC and 21% for GSH-Et) did not correlate to the intracellular GSH level but to the concentration of the thiols in the medium. In vivo , epidermal GSH was increased to maximally 163% of the control level by NAC and 1234% by GSH-Et. The maximum in vivo photoprotection provided by GSH-Et was 55%, similar to what was found previously for NAC. Again, the protection seemed more closely correlated to the thiol dose than to the GSH level. The study showed that the protection against UV-induced reactive intermediates depends on a general antioxidant action of these thiols, rather than only on their role as GSH precursors.  相似文献   

17.
Three methods for the determination of rat hepatocellular thiols by high-performance liquid chromatography (HPLC) with fluorescence (FL) detection have been developed. The thiols in the cells were tagged with three fluorogenic reagents, SBD-F, ABD-F and DBD-F. These reagents could permeate into cells and effectively reacted with thiols to produce highly fluorescent derivatives. These derivatives fluoresced in the long wavelength region at around 530 nm (excitation at around 380 nm). The five biological thiols tagged were perfectly separated by reversed-phase liquid chromatography and were sensitively and selectively detected without any interference from endogenous substanaces. The main thiol in the cells was reduced GSH and the concentration was at the mM level. The proposed procedures were applied to the determination of hepatocellular GSH after treatment of environmental pollutants such as volatile organic compounds (VOC) and endocrine disrupting chemicals (EDC). From the comparison of intracellular GSH concentration, the test compounds were classified into four groups: compounds of strong depletion (eg triphenyltin chloride, hexachlorocyclohexene, nonylphenol, bromoacetic acid, 4-chlorobenzyl chloride and 1,3-dichloropropene), slight decrease (eg bisphenol A, benzo[a]pylene, carbon tetrachloride and benzene), slight increase (eg bromoform and toluene), and no effect (eg 1,1,1-trichloroethane, 1,1,2-trichloroethane and 1,2-dichloroethane). Although the decrease of GSH concentration does not reflect the cytotoxicity of chemicals, the proposed procedure utilizing isolated rat hepatpcytes seems to be useful for investigating the bioactivation of VOC, and EDC, etc.  相似文献   

18.
The weak fluorescence of N-[P-(2-benzoxazolyl)phenyl]maleimide (BOPM) can be greatly enhanced by thiol-containing compounds. A sensitive and simple spectrofluorimetric method based on the use of BOPM has been developed for the determination of thiols such as cysteine (Cys) and reduced glutathione (GSH). Calibration plots were linear in the concentration range from 0 to 1.6 x 10(-7) mol L(-1) for Cys and 0 to 1.7 x 10(-7) mol L(-1) for GSH. The detection limits (3a) were 2.36 x 10(-10) mol L(-1) for Cys and 1.49 x 10(-10) mol L(-1) for GSH. Many other amino acids (present at 100-fold greater concentrations) did not interfere with the determination. The proposed method has been used for the determination of Cys in protein hydrolysate and cystine electrolyte or GSH in serum, with recoveries of 95.4-103.7%.  相似文献   

19.
An efficient solid phase extraction-spectrofluorimetric method using graphene as adsorbent was developed to sensitively determine glutathione (GSH) in biological samples. Fluorescent probe N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl)iodoacetamide (BODIPY Fl-C1-IA) was applied for the derivatization of GSH. The procedure was based on BODIPY Fl-C1-IA selective reaction with GSH to form highly fluorescent product BODIPY Fl-C1-IA-GSH, its extraction to the graphene-packed SPE cartridge and spectrofluorimetric determination. Some factors affecting the extraction efficiency, such as the type of the eluent and its volume, sample pH, extraction time, and sample volume were optimized. Comparative studies were also performed between graphene and other adsorbents including C18 silica, graphitic carbon, and multi-walled carbon nanotubes for the extraction of analyte. The calibration graph using the pretreatment system for GSH was linear over the range of 0.5-200 nM. The limit of detection was 0.01 nM (signal-to-noise ratio=3). Relative standard deviation for six replicate determinations of GSH at 80 nM concentration level was lower than 5.0%. The developed method was applied to the determination of GSH in human plasma with recoveries of 92-108%. This work revealed the great potentials of graphene as an excellent sorbent material in the analysis of biological samples.  相似文献   

20.
Oxidative stress and the resulting damage to cellular and extracellular components has been observed in a variety of degenerative processes, including degenerative joint disorders, where high-molar-mass hyaluronan (HA) is often found to be massively degraded. The present study sought to test the hypothesis that dithiols are more effective in protecting biomacromolecules from free-radicalmediated damage than monothiols. The materials/thiols tested included bucillamine (BUC), dithioerythritol (DTE), dithiothreitol (DTT) and glutathione (GSH), as a reference, for their effectiveness in protecting HA from oxidative degradation induced in vitro. Since HA degradation results in a decrease in its dynamic viscosity, rotational viscometry was applied to follow HA oxidative degradation. The free-radical-scavenging activities of the thiols tested were determined by 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assays. It was found that all the dithiols in the concentration range tested protected HA from the oxidative degradation. On the other hand, monothiol GSH exerted protection only at high concentrations (10 μmol L?1 and 100 μmol L?1) and 1 μmol L?1 of GSH even exhibited a prodegradative effect. The ABTS assay revealed free-radical scavenging activities in the following order: BUC, DTT, DTE, GSH, and that of the DPPH assay: BUC, DTE, DTT, GSH. In conclusion, it was demonstrated that dithiols may be more effective than monothiols in affording biomacromolecule protection from oxidative degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号