首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A crucial problem for many global optimization methods is how to handle partition sets whose feasibility is not known. This problem is solved for broad classes of feasible sets including convex sets, sets defined by finitely many convex and reverse convex constraints, and sets defined by Lipschitzian inequalities. Moreover, a fairly general theory of bounding is presented and applied to concave objective functions, to functions representable as differences of two convex functions, and to Lipschitzian functions. The resulting algorithms allow one to solve any global optimization problem whose objective function is of one of these forms and whose feasible set belongs to one of the above classes. In this way, several new fields of optimization are opened to the application of global methods.  相似文献   

2.
Joydeep Dutta 《TOP》2005,13(2):185-279
During the early 1960’s there was a growing realization that a large number of optimization problems which appeared in applications involved minimization of non-differentiable functions. One of the important areas where such problems appeared was optimal control. The subject of nonsmooth analysis arose out of the need to develop a theory to deal with the minimization of nonsmooth functions. The first impetus in this direction came with the publication of Rockafellar’s seminal work titledConvex Analysis which was published by the Princeton University Press in 1970. It would be impossible to overstate the impact of this book on the development of the theory and methods of optimization. It is also important to note that a large part of convex analysis was already developed by Werner Fenchel nearly twenty years earlier and was circulated through his mimeographed lecture notes titledConvex Cones, Sets and Functions, Princeton University, 1951. In this article we trace the dramatic development of nonsmooth analysis and its applications to optimization in finite dimensions. Beginning with the fundamentals of convex optimization we quickly move over to the path breaking work of Clarke which extends the domain of nonsmooth analysis from convex to locally Lipschitz functions. Clarke was the second doctoral student of R.T. Rockafellar. We discuss the notions of Clarke directional derivative and the Clarke generalized gradient and also the relevant calculus rules and applications to optimization. While discussing locally Lipschitz optimization we also try to blend in the computational aspects of the theory wherever possible. This is followed by a discussion of the geometry of sets with nonsmooth boundaries. The approach to develop the notion of the normal cone to an arbitrary set is sequential in nature. This approach does not rely on the standard techniques of convex analysis. The move away from convexity was pioneered by Mordukhovich and later culminated in the monographVariational Analysis by Rockafellar and Wets. The approach of Mordukhovich relied on a nonconvex separation principle called theextremal principle while that of Rockafellar and Wets relied on various convergence notions developed to suit the needs of optimization. We then move on to a parallel development in nonsmooth optimization due to Demyanov and Rubinov called Quasidifferentiable optimization. They study the class of directionally differentiable functions whose directional derivatives can be represented as a difference of two sublinear functions. On other hand the directional derivative of a convex function and also the Clarke directional derivatives are sublinear functions of the directions. Thus it was thought that the most useful generalizations of directional derivatives must be a sublinear function of the directions. Thus Demyanov and Rubinov made a major conceptual change in nonsmooth optimization. In this section we define the notion of a quasidifferential which is a pair of convex compact sets. We study some calculus rules and their applications to optimality conditions. We also study the interesting notion of Demyanov difference between two sets and their applications to optimization. In the last section of this paper we study some second-order tools used in nonsmooth analysis and try to see their relevance in optimization. In fact it is important to note that unlike the classical case, the second-order theory of nonsmoothness is quite complicated in the sense that there are many approaches to it. However we have chosen to describe those approaches which can be developed from the first order nonsmooth tools discussed here. We shall present three different approaches, highlight the second order calculus rules and their applications to optimization.  相似文献   

3.
A method is described of obtaining convex polynomial approximations to discrete sets of convex data. The approximations are best convex combinations of certain component convex functions. A Weierstrass-type theorem is proved, to justify the choice of component functions, and numerical illustrations are given.  相似文献   

4.
We consider the problem of constructing the convex envelope of a lower semi-continuous function defined over a compact convex set. We formulate the envelope representation problem as a convex optimization problem for functions whose generating sets consist of finitely many compact convex sets. In particular, we consider nonnegative functions that are products of convex and component-wise concave functions and derive closed-form expressions for the convex envelopes of a wide class of such functions. Several examples demonstrate that these envelopes reduce significantly the relaxation gaps of widely used factorable relaxation techniques.  相似文献   

5.
Chebyshev points of bounded convex sets, search algorithms for them, and various applications to convex programming are considered for simple approximations of reachable sets, optimal control, global optimization of additive functions on convex polyhedra, and integer programming. The problem of searching for Chebyshev points in multicriteria models of development and operation of electric power systems is considered.  相似文献   

6.
Generalized polyhedral convex sets, generalized polyhedral convex functions on locally convex Hausdorff topological vector spaces, and the related constructions such as sum of sets, sum of functions, directional derivative, infimal convolution, normal cone, conjugate function, subdifferential are studied thoroughly in this paper. Among other things, we show how a generalized polyhedral convex set can be characterized through the finiteness of the number of its faces. In addition, it is proved that the infimal convolution of a generalized polyhedral convex function and a polyhedral convex function is a polyhedral convex function. The obtained results can be applied to scalar optimization problems described by generalized polyhedral convex sets and generalized polyhedral convex functions.  相似文献   

7.
We deal with duality for almost convex finite dimensional optimization problems by means of the classical perturbation approach. To this aim some standard results from the convex analysis are extended to the case of almost convex sets and functions. The duality for some classes of primal-dual problems is derived as a special case of the general approach. The sufficient regularity conditions we need for guaranteeing strong duality are proved to be similar to the ones in the convex case. The research of the first and third authors was partially supported by DFG (German Research Foundation), project WA 922/1. The research of the second author was supported by the grant PN II, ID 523/2007.  相似文献   

8.
We show how to approximate the feasible region of structured convex optimization problems by a family of convex sets with explicitly given and efficient (if the accuracy of the approximation is moderate) self-concordant barriers. This approach extends the reach of the modern theory of interior-point methods, and lays the foundation for new ways to treat structured convex optimization problems with a very large number of constraints. Moreover, our approach provides a strong connection from the theory of self-concordant barriers to the combinatorial optimization literature on solving packing and covering problems.  相似文献   

9.
We propose regularized cutting-plane methods for solving mixed-integer nonlinear programming problems with nonsmooth convex objective and constraint functions. The given methods iteratively search for trial points in certain localizer sets, constructed by employing linearizations of the involved functions. New trial points can be chosen in several ways; for instance, by minimizing a regularized cutting-plane model if functions are costly. When dealing with hard-to-evaluate functions, the goal is to solve the optimization problem by performing as few function evaluations as possible. Numerical experiments comparing the proposed algorithms with classical methods in this area show the effectiveness of our approach.  相似文献   

10.
Abstract

This paper focuses on how to compare two fuzzy sets and, from the viewpoint of set optimization, proposes eight types of fuzzy-set relations based on a convex cone as new comparison criteria of fuzzy sets. Then, difference evaluation functions for fuzzy sets are introduced. Under suitable assumptions of certain compactness and stability of fuzzy sets, we show that these functions correspond well to the fuzzy-set relations. In addition, through transforming these functions stepwise, we deal with numerical calculation methods of them in particular cases. Consequently, we can judge whether each fuzzy-set relation holds or not for given two fuzzy sets with the aid of computers.  相似文献   

11.
In this paper we deal with strong Fenchel duality for infinite-dimensional optimization problems where both feasible set and objective function are evenly convex. To this aim, via perturbation approach, a conjugation scheme for evenly convex functions, based on generalized convex conjugation, is used. The key is to extend some well-known results from convex analysis, involving the sum of the epigraphs of two conjugate functions, the infimal convolution and the sum formula of ??-subdifferentials for lower semicontinuous convex functions, to this more general framework.  相似文献   

12.
This work is concerned with the algorithmic reachability analysis of continuous-time linear systems with constrained initial states and inputs. We propose an approach for computing an over-approximation of the set of states reachable on a bounded time interval. The main contribution over previous works is that it allows us to consider systems whose sets of initial states and inputs are given by arbitrary compact convex sets represented by their support functions. We actually compute two over-approximations of the reachable set. The first one is given by the union of convex sets with computable support functions. As the representation of convex sets by their support function is not suitable for some tasks, we derive from this first over-approximation a second one given by the union of polyhedrons. The overall computational complexity of our approach is comparable to the complexity of the most competitive available specialized algorithms for reachability analysis of linear systems using zonotopes or ellipsoids. The effectiveness of our approach is demonstrated on several examples.  相似文献   

13.
The family of convex sets in a (finite dimensional) real vector space admits several unary and binary operations – dilatation, intersection, convex hull, vector sum – which preserve convexity. These generalize to convex functions, where there are in fact further operations of this kind. Some of the latter may be regarded as combinations of two such operations, acting on complementary subspaces. In this paper, a general theory of such mixed operations is introduced, and some of its consequences developed.  相似文献   

14.
15.
16.
This article is devoted to the study of Fritz John and strong Kuhn-Tucker necessary conditions for properly efficient solutions, efficient solutions and isolated efficient solutions of a nonsmooth multiobjective optimization problem involving inequality and equality constraints and a set constraints in terms of the lower Hadamard directional derivative. Sufficient conditions for the existence of such solutions are also provided where the involved functions have pseudoconvex sublevel sets. Our results are based on the concept of pseudoconvex sublevel sets. The functions with pseudoconvex sublevel sets are a class of generalized convex functions that include quasiconvex functions.  相似文献   

17.
Theodore Motzkin proved, in 1936, that any polyhedral convex set can be expressed as the (Minkowski) sum of a polytope and a polyhedral convex cone. This paper provides five characterizations of the larger class of closed convex sets in finite dimensional Euclidean spaces which are the sum of a compact convex set with a closed convex cone. These characterizations involve different types of representations of closed convex sets as the support functions, dual cones and linear systems whose relationships are also analyzed in the paper. The obtaining of information about a given closed convex set F and the parametric linear optimization problem with feasible set F from each of its different representations, including the Motzkin decomposition, is also discussed.  相似文献   

18.
The present paper is a continuation of [2] where we deal with the duality for a multiobjective fractional optimization problem. The basic idea in [2] consists in attaching an intermediate multiobjective convex optimization problem to the primal fractional problem, using an approach due to Dinkelbach ([6]), for which we construct then a dual problem expressed in terms of the conjugates of the functions involved. The weak, strong and converse duality statements for the intermediate problems allow us to give dual characterizations for the efficient solutions of the initial fractional problem. The aim of this paper is to compare the intermediate dual problem with other similar dual problems known from the literature. We completely establish the inclusion relations between the image sets of the duals as well as between the sets of maximal elements of the image sets.   相似文献   

19.
We study approaches for obtaining convex relaxations of global optimization problems containing multilinear functions. Specifically, we compare the concave and convex envelopes of these functions with the relaxations that are obtained with a standard relaxation approach, due to McCormick. The standard approach reformulates the problem to contain only bilinear terms and then relaxes each term independently. We show that for a multilinear function having a single product term, this approach yields the convex and concave envelopes if the bounds on all variables are symmetric around zero. We then review and extend some results on conditions when the concave envelope of a multilinear function can be written as a sum of concave envelopes of its individual terms. Finally, for bilinear functions we prove that the difference between the concave upper bounding and convex lower bounding functions obtained from the McCormick relaxation approach is always within a constant of the difference between the concave and convex envelopes. These results, along with numerical examples we provide, give insight into how to construct strong relaxations of multilinear functions.  相似文献   

20.
In this paper, we present a unified approach for studying convex composite multiobjective optimization problems via asymptotic analysis. We characterize the nonemptiness and compactness of the weak Pareto optimal solution sets for a convex composite multiobjective optimization problem. Then, we employ the obtained results to propose a class of proximal-type methods for solving the convex composite multiobjective optimization problem, and carry out their convergence analysis under some mild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号