共查询到20条相似文献,搜索用时 31 毫秒
1.
Takahashi Ryoji Nakanishi Kazuki Soga Naohiro 《Journal of Sol-Gel Science and Technology》1997,8(1-3):71-76
Gels with interconnected domain morphologies in the micrometer-range have been prepared in the silica-zirconia system. The domain formation kinetics in the gelling solution have been examined. Growth of an ordered structure on the length scale of micrometers, for which the kinetics are interpreted as spinodal decomposition, was observed by time-resolved light scattering measurements. The remarkable feature of the silica-zirconia system was that a time-dependent decrease of the wavelength of compositional fluctuations was observed. This occurred in the early stage, probably because the fast condensation reaction which was induced by the addition of zirconia, lead to a substantial change in quench depth on a timescale similar to that of the growth of concentration fluctuations. In the following stage, the coarsened domain structure was frozen-in by the sol-gel transition as the permanent morphology. 相似文献
2.
sol-gel 法在有机-无机杂化体系中制备二氧化硅微粒 总被引:1,自引:0,他引:1
利用sol-gel法,通过正硅酸乙酯(tetraethyl orthosilicate(TEOS))在聚氧化乙烯/二甲基甲酰胺溶液中水解、缩聚,制备了粒径分布均匀的微米级二氧化硅粒子;利用扫描电子显微镜观测了制备条件对二氧化硅粒子的粒度和形貌的影响;研究了这一方法在制备无机粒子过程中的原理. 相似文献
3.
Hironori Kaji Kazuki Nakanishi Naohiro Soga 《Journal of Sol-Gel Science and Technology》1993,1(1):35-46
Silica gels with well-defined pores both in micrometer and nanometer ranges were obtained by acid-catalyzed hydrolysis and polymerization of tetramethoxysilane in the presence of formamide. The micrometer-range structures of these gels are studied in terms of the phase diagram of the quasi two-component system, namely solvent-rich and silica-rich end compositions. The resulting interconnected structures and aggregates of particles are related to the occurrence of spinodal phase separation. The composition region that gave interconnected structures for the present system was much more limited and their characteristic sizes were much smaller than those for the previously reported systems containing an organic polymer. These results could be explained qualitatively by the effect of the degree of polymerization on the Flory-Huggins' type free energy change of mixing. 相似文献
4.
Hironori Kaji Kazuki Nakanishi Naohiro Soga Tadashi Inoue Norio Nemoto 《Journal of Sol-Gel Science and Technology》1994,3(3):169-188
The investigation of phase separation processes induced by polymerization reactions of tetramethoxysilane (TMOS) was attempted by a time-resolved light scattering method for TMOS-formamide-water system under the acid-catalyzed condition. Since the early stage of the phase separation exhibits very fast kinetics and weak scattering intensity, the experimental set-up was designed so as to reduce the experimental error and to obtain higher time resolution by using a laser beam expander. For the gels whose morphologies are interconnected structure and aggregates of particles, it was experimentally found that the wavelength of the concentration fluctuation in the early stage of phase separation was time-independent and its amplitude grew exponentially with time. This suggests that these samples phase-separate by spinodal decomposition mechanism. In the later stages of phase separation, the coarsening process and the following structure-freezing process by gel-network formation were observed. 相似文献
5.
Derek L. Ho Boualem Hammouda Steven R. Kline 《Journal of Polymer Science.Polymer Physics》2003,41(1):135-138
The dynamic light scattering results presented in this letter demonstrate that the clustering of poly(ethylene oxide) (PEO) can be observed even in ultrapure, freshly double‐distilled and filtered deionized water. It is confirmed that the filtration of solutions removes the clustering structure and that a steady‐state amount of PEO in clusters is reformed in filtered solutions within 24 h. Adding a drop of chloroform to unfiltered aqueous solutions of PEO temporarily alters the clustering structure, but it prevents the clustering of PEO in filtered solutions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 135–138, 2003 相似文献
6.
Shinichi Kinugasa Hisae Nakahara Jun-Ichi Kawahara Yoshinori Koga Haruo Takaya 《Journal of Polymer Science.Polymer Physics》1996,34(3):583-586
Static light scattering measurements were performed on dilute solutions of monodisperse poly(ethylene oxide) (PEO) in methanol at 25°C. PEOs of five different molecular weights ranging from nominal Mw = 8.6 × 104 to 9.13 × 105 were used. Linear Zimm plots were obtained for all the PEO samples: no downturn was observed at small angles, indicating that no large aggregates of PEO molecules exist in the solution. From the plots, values of the weight-average molecular weight, Mw, the radius gyration, RG, and the second virial coefficient, A2, were successfully determined for respective PEOs. Observed relationship between RG and Mw indicates that methanol is certainly a good solvent for the polymer. © 1996 John Wiley & Sons, Inc. 相似文献
7.
This study for the first time discovered miscibility in the binary blend of semicrystalline poly(ethylene oxide) (PEO) with amorphous poly(benzyl methacrylate) (PBzMA). Differential scanning calorimetry, optical and scanning electron microscopy, and infrared spectroscopy were performed to characterize and demonstrate miscibility in the PEO/PBzMA system. The glass‐transition behavior and Fourier transform infrared results suggest that the intermolecular interactions between the pairs were likely nonspecific and at best comparable to those among the same constituent component. The melting‐point depression study yielded χ = −0.1, indicating a relatively low interaction strength. It is concluded that the phase behavior of the blend was miscibility with nonspecific interactions, mostly a matched polar–polar intermolecular attraction. PEO spherulitic crystallization in the blend is discussed to support the miscibility behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 562–572, 2000 相似文献
8.
Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution 总被引:6,自引:0,他引:6
The phase behavior and aggregation properties of block copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronics, poloxamers) in aqueous solution have recently attracted much attention. Both experimental and theoretical studies are reviewed, not comprehensively, but with the focus on studies, partly cooperative, partly independent, performed by groups in Uppsala (light scattering and fluorescence), Roskilde (rheology and calorimetry), Risø (SANS), Graz (x-ray and speed of sound), and Lund (theoretical model calculations).The phase behavior of these copolymers is similar in many respects to that of conventional nonionic surfactants, with the appearance of hexagonal, cubic, and lamellar liquid crystalline phases at high concentrations. In the isotropic solution phase the critical concentration for micelle formation is strongly temperature dependent, and at a given concentration the monomer to micelle transition occurs gradually over a broad temperature range, partly due to the broad size polydispersity of both the PO- and EO-blocks. For some Pluronic copolymers a transition from globular to long rod-like micelles occurs above a transition temperature, resulting in a strong and sudden increase of viscosity and viscoelasticity of the solution.Size and aggregation numbers have been determined for the globular micelles in some cases, and also the rod-like micelles have been characterized. NMR and fluorescence measurements have provided further information on the properties of the micellar core and mantle. In combination, results from different measurements on the same Pluronics material indicate that the aggregation number of the micelles increases with the temperature, whereas the hydrodynmic radius varies much less. The PEO-mantle of the micelles seems to contract with increasing temperature. The core appears to contain appreciable amounts of PEO in addition to PPO (and also some water). The segregation between core and mantle is not as distinct as in normal micelles, a conclusion which is in line with the predictions from the model calculations. 相似文献
9.
Two different size-exclusion chromatography (SEC) systems, connected in-line either to a low-angle light scattering (LALS) or to a multiangle light scattering (MALS) detector, are employed for determination of molecular mass distributions (MMD) of poly(ethylene oxide) (PEO) samples having a weight average molecular mass up to eight millions. The detrimental effect of the presence of strongly scattering silica particles in the samples on the light scattering signal can be eliminated using a suitable sample dissolution procedure utilizing silica solubility in aqueous mobile phase. The selection of flow-rate and sample concentration have a large impact on the obtained results. Hydrodynamic retardation phenomena and nonlinearity effects are shown to introduce severe errors in the molecular mass distributions unless flow-rate and sample concentration are kept at sufficiently low levels. Self-compensating ability of the dual detection in flow-rate effects is shown to be the main advantage here. A good agreement between the results obtained using LALS and MALS detection is found provided that a carefully selected angular extrapolation procedure is used in the case of MALS data. Thus, using carefully selected experimental conditions, SEC with light-scattering (LS) and refractometric detection proved to be an efficient technique for MMD characterisation also of ultra-high molecular mass (UHM) PEO polymers. 相似文献
10.
A series of graft copolymers were synthesized based on ethylene‐co‐m,p‐methylstyrene (EMS) (backbone copolymer), ethylene‐1‐hexene‐m,p‐methylstyrene (EHMS) (backbone terpolymer), and polyethylene glycol monomethyl ethers (PEGM) (grafts) in this study. The PEGMs with molecular weights of 750 and 2000 were used. The chemical composition of the graft copolymers was analyzed by NMR and DSC measurements. The graft copolymers exhibited a phase‐separated morphology with the backbone and the methoxy polyethylene glycol (MPEG) grafts forming separate crystalline phases. The MPEG phase had a melting temperature lower than the corresponding MPEG homopolymer, as determined by DSC. The melting point of the crystalline phase formed by the EMS and EHMS main chains was lower than that of pure polymer backbone. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
11.
Mengxian Shang Hideto Matsuyama Taisuke Maki Masaaki Teramoto Douglas R. Lioyd 《Journal of Polymer Science.Polymer Physics》2003,41(2):194-201
Liquid–liquid thermally induced phase separation of the polymer‐diluent system of poly(ethylene‐co‐vinyl alcohol) (EVOH)‐glycerol was examined under light scattering. For EVOH with an ethylene content of 38 mol % (EVOH38), maxima of the scattered light intensity were observed that indicated that phase separation occurred by the spinodal decomposition (SD). The growth of the structures formed by the general liquid–liquid phase separation obeyed a power‐law scaling relationship in SD. For EVOH with an ethylene content of 32 mol % (EVOH32), the liquid–liquid phase separation resulted from the polymer crystallization. In this case, the structure growth showed the characteristic behavior in which the crystalline particles were initially formed, and then the droplets formed by the liquid–liquid phase separation induced by the crystallization grew rapidly. Furthermore, the growth of the droplet by the phase separation was followed by an optical microscope measurement at a constant cooling rate. The phase‐separated structure formed after the crystallization can grow faster than that formed by the normal liquid–liquid phase separation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 194–201, 2003 相似文献
12.
H. Hommel A. Touhami A. Halli A. P. LeGrand 《Journal of Polymer Science.Polymer Physics》1995,33(16):2189-2198
EPR spectroscopy of labeled poly(ethylene oxide) (PEO) grafted on silica has been used to characterize the conformation and local dynamics of the chains. Grafted molecules of MW 2000 with grafting ratios of 0.045, 0.057, 0.126, and 0.42 molecules/nm2 were in contact with benzene. The mobility of the label was compared with that observed for solution of PEO from very diluted to highly concentrated and even bulk PEO. Thus, the concentration inside the grafted layer could be evaluated and also the thickness, which evolves rather linearly with the grafting ratio. © 1995 John Wiley & Sons, Inc. 相似文献
13.
Emmanuel Beaudoin Oleg Borisov Alain Lapp Jeanne François 《Macromolecular Symposia》2003,191(1):89-98
The effect of temperature on the structure of aqueous dispersions of hydrophobically end-capped poly(ethylene oxide) (PEOM) was investigated by small angle neutron scattering (SANS). Polymers with hydrogenated or deuterated n-octadecyl end-groups were studied in heavy water or in a mixture heavy water / water, respectively. In the latter case the PEO chains were selectively matched. In all the cases, the scattering curves were characterised by a main peak which revealed organisation of polymers into micelles consisting of hydrophobic cores surrounded by repulsive PEO coronae. Measurements were performed in the semi-dilute regime where micelles coronae overlap. At constant polymer concentration, an increase in temperature leads to decreasing solvent strength of water for the PEO chains and decreasing repulsion between the PEO coronae. As a result, the intensity of the peak in a mixture of water /heavy water decreases with temperature On the contrary, in heavy water, the peak of the scattered intensity increases with increasing temperature. This scattering behaviour is interpreted on the basis of a scaling theory of the semi-dilute solutions of star-like polymer micelles. 相似文献
14.
Daewon Lee Seung‐Heon Lee Sangcheol Kim Kookheon Char Jae Hyung Park Yoo Han Bae 《Journal of Polymer Science.Polymer Physics》2003,41(20):2365-2374
The temperature dependence of thermal, morphological, and rheological properties of amphiphilic polyurethanes was examined with differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS), rheological measurements, and Fourier transform infrared spectroscopy. Multiblock (MPU) and triblock (TPU) polyurethanes were synthesized with two crystallizable segments—poly(ethylene oxide) (PEO) as a hydrophilic block and poly(tetramethylene oxide) (PTMO) as a hydrophobic block. DSC and WAXS measurements demonstrated that the microphase of MPUs in the solid state is dominantly affected by the PEO crystalline phase. However, high‐order peaks were not observed in the SAXS measurements because the crystallization of the PEO segments in MPUs was retarded by poor sequence regularity. The microphase in the melt state was induced by the hydrogen bonding between the N? H group of hexamethylene diisocyanate linkers and the ether oxygen of PEO or PTMO blocks. As the temperature increased, the smaller micro‐phase‐separated domains were merged into the larger domains, and the liquidlike ordering was eventually disrupted because of the weakening hydrogen bonding. However, the fully homogeneous state of an MPU with a molar ratio of 5/5 PEO/PTMO (MPU55) was not confirmed even at much higher temperatures with both SAXS and rheological measurements. However, the SAXS patterns of TPU showed weak but broad second‐order peaks below the melting temperature of the PEO block. Compared with MPU55, the ordering of the TPU crystalline lamellar stacks was enhanced because of the high sequence regularity and the low hydrogen‐bonding density. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2365–2374, 2003 相似文献
15.
Memory effects of several copolymers of poly(ethylene oxide) (PEO) and poly(ethylene terephthalate) (PET) were illustrated with photos, determined with shrinkage experiments and characterized by the recovery of samples to their original figures. Copolymers of appropriate composition could undertake an approximately full recovery which is tightly related to the annealing temperature at which shrinkage of samples occurs to some extent. Melting and recrystallization of PEO segments may be responsible for the memory effect. The memory properties of samples almost kept unchanged after many fatigue cycles (e.g. 15–20 cycles), which could make these copolymers useful in practical applications as novel shape memory materials. © 1997 John Wiley & Sons, Ltd. 相似文献
16.
Satyam Srivastava Zachary Fink Elizabeth G. Burns Thomas P. Russell David A. Hoagland 《Journal of polymer science. Part A, Polymer chemistry》2021,59(2):146-152
The phase behavior of poly(ethylene oxide) (PEO) in aqueous salt solutions has been studied many times but rarely for solution conditions relevant to the hydration process of cement, where PEO's interactions with surrounding ions modulate its application as both plasticizer and strength-building additive. Here, the conformation, that is, coil size, of PEO was examined in aqueous solutions in the presence of sodium-, calcium- and aluminum-containing salts. Ion-induced conformational changes for a model linear PEO were mostly unremarkable and consistent with past reports. However, trends for aluminum-containing ions, which predominantly occur in water at neutral and basic pH as the monovalent hydroxo-aluminate anion Al(OH)4−, were different: either present as the sodium or calcium salt, PEO's hydrodynamic radius determined by dynamic light scattering was approximately 30% larger than determined by intrinsic viscosity. The intrinsic viscosity was similar to that measured in the presence of simpler monovalent anions. We hypothesize that aluminum containing ions weakly couple the model polymer's hydroxyl end groups (present at just one chain end), creating polymeric aggregates sensitive to disruption by shearing. Supporting our argument, the hydrodynamic radius determined by dynamic light scattering dropped to the intrinsic viscosity value after hydroxyl groups were converted to methoxy groups. 相似文献
17.
Intensity of light, I(q,t), scattered from homogeneous aqueous solutions, of nanoclay (Laponite) and protein (gelatin‐A), was studied to monitor the temporal and spatial evolution of the solution into a phase‐separated nanoclay–protein‐rich dense phase, when the sample temperature was quenched below spinodal temperature, Ts (=311 ± 3 K). The zeta potential data revealed that the dense phase comprised charge‐neutralized intermolecular complexes of nanoclay and protein chains of low surface charge. The early stage, t < 500 s, of phase separation could be described adequately through Cahn‐Hilliard theory of spinodal decomposition where the intensity grows exponentially, I(q, t) = I0 exp.(2R(q)t). The wave vector, q dependence of the growth parameter, R(q) exhibited a maxima independent of time. Corresponding correlation length, 1/qc = ξc was found to be ≈75 ± 5 nm independent of quench depth. In the intermediate regime, anomalous growth described by I(q, t) ~ tα with α = 0.1 ± 0.02 independent of q was observed. Rheological studies established that there was a propensity of network structures inside the dense phase. Isochronal temperature sweep studies of the dense phase determined the melting temperature, Tm = 312 ± 4 K, which was comparable with the spinodal temperature. The stress‐diffusion coupling prevailing in the dense phase when analyzed in the Doi‐Onuki model yielded a viscoelastic correlation length, ξv determined from low‐frequency storage modulus, G ′0 ≈ kB T/ξ, which was ξv ≈ 35 ± 3 nm indicating 2ξv ≈ ξc. It is concluded that the early stage of phase separation in this system was sufficiently described by linear Cahn‐Hilliard theory, but the same was not true in the intermediate stage. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 555–565, 2010 相似文献
18.
Paula Carretero Serena Molina Ricardo Sandín Juan Rodríguez‐Hernández Angel E. Lozano Javier de Abajo 《Journal of polymer science. Part A, Polymer chemistry》2013,51(4):963-976
Novel polyisophthalamides containing pendent poly(ethylene oxide) (PEO) sequences were prepared by grafting PEO onto poly(5‐hydroxy‐isophthalamide)s (HO‐PIPAs). First, an optimized method of synthesis was applied to prepare HO‐PIPAs, following the rules of the direct polyamidation reaction promoted by triphenyl phosphite and catalyzed by pyridine. Next, the modification of HO‐PIPAs was performed by a nucleophilic substitution reaction with chlorine‐terminated PEO monomethyl ether of average molecular weight 100, 550, and 1000 g/mol. The modification (grafting) reaction was optimized to assure virtually 100% yield. Polymers behaved as graft or brush‐like copolymers of polyisophthalamide (PIPA) and PEO, covering a wide range of ratios of PIPA/PEO. Physical properties, such as solubility, glass transition temperature, and thermal resistance were determined. Special attention was paid to the affinity of the novel copolymers for water. It was realized that with a high content of PEO, the materials could absorb water in amounts exceeding their own weight. Gravimetric methods and water contact angle measurements were used to quantify the hydrophilicity of the current PIPA‐g‐PEO copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
19.
Darwin P. R. Kint Antxon Martínez De Ilarduya Sebastin Muoz‐Guerra 《Journal of polymer science. Part A, Polymer chemistry》2000,38(20):3761-3770
The synthesis, microstructure, and thermal behavior of a series of poly(ethylene terephthalate) (PET) copolymers containing nitroterephthalic units are described. These novel copolyesters were synthesized by transesterification followed by melt copolycondensation of dimethyl terephthalate and dimethyl nitroterephthalate mixtures with ethylene glycol. The molar ratio of the two comonomers in the feed varied from 95/5 to 25/75. Furthermore, PET and poly(ethylene nitroterephthalate) homopolymers were synthesized with the same method and comparatively studied. Copolyester compositions were practically the same as in the feed, and weight‐average molecular weights ranged from 10,000 to 60,000. The two monomeric units were randomly distributed along the polymer chain, and the experimentally determined average sequence lengths were in accordance with ideal copolycondensation statistics. Melting temperatures and enthalpies of the copolyesters decreased with increasing content in nitroterephthalic units, and they all showed a single glass‐transition temperature superior to that of PET. They appeared to be stable up to 300 °C, and thermal degradation occurred in two well‐differentiated steps. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3761–3770, 2000 相似文献
20.
Patric Jannasch Bengt Wessln 《Journal of polymer science. Part A, Polymer chemistry》1993,31(6):1519-1529
Graft copolymers containing poly(ethylene oxide) side chains on a polystyrene backbone have been synthesized. Styrene copolymers synthesized by free radical mechanism and containing between 5 and 15 mol % acrylamide or methacrylamide were used as backbones. The amide groups in the copolymers were ionized by using potassium tert-butoxide or potassium naphthalene, and grafting was achieved by utilizing the amide anions as initiator sites for the polymerization of ethylene oxide in 2-ethoxyethyl ether at 65°C. The graft copolymers were characterized with respect to molecular weight and composition using elemental analysis, NMR, gel permeation chromatography, IR, and viscosity measurements. The size of the side chains were between 600 and 2000 g/mol. GPC results from a hydrolyzed graft copolymer sample suggest a narrow size distribution for the poly(ethylene oxide) grafts. Solution properties of the graft copolymers were investigated in different toluene/methanol mixtures. The intrinsic viscosities of the graft copolymers were found to depend primarily on the poly(ethylene oxide) content rather than the graft density or the poly(ethylene oxide) chain length. © 1993 John Wiley & Sons, Inc. 相似文献