首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A High-resolution two-dimensional (2D) (1)H double-quantum (DQ) homonuclear recoupling experiments, combined with smooth amplitude-modulation (SAM) homonuclear decoupling is presented. The experiment affords highly resolved and clean (1)H DQ-SQ 2D spectra at very-fast MAS rates (nu(R)=35 kHz). The method is well suited to probe (1)H-(1)H distances in powdered solids and demonstrations are applied on a NaH(2)PO(4) powdered sample, an inorganic compound having hydrogen bonding networks.  相似文献   

2.
Recently we introduced a radiofrequency pulse scheme for heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance under magic-angle spinning [R.S. Thakur, N.D. Kurur, P.K. Madhu, Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR, Chem. Phys. Lett. 426 (2006) 459-463]. Variants of this sequence, swept-frequency TPPM, employing frequency modulation of different types have been further tested to improve the efficiency of heteronuclear dipolar decoupling. Among these, certain sequences that were found to perform well at lower spinning speeds are demonstrated here on a liquid-crystal sample of MBBA for application in static samples. The new sequences are compared with the standard TPPM and SPINAL schemes and are shown to perform better than them. These modulated schemes perform well at low decoupler radiofrequency power levels and are easy to implement on standard spectrometers.  相似文献   

3.
Three (1)H-(1)H homonuclear dipolar decoupling schemes for (1)H indirect detection measurements at very fast MAS are compared. The sequences require the following conditions: (i) being operable at very fast MAS, (ii) a long T(2)(') value, (iii) a large scaling factor, (iv) a small number of adjustable parameters, (v) an acquisition window, (vi) a low rf-power requirement, and (vii) a z-rotation feature. To satisfy these conditions a modified sequence named TIlted Magic-Echo Sandwich with zero degree sandwich pulse (TIMES(0)) is introduced. The basic elements of TIMES(0) consist of one sampling window and two phase-ramped irradiations, which realize alternating positive and negative 360° rotations of (1)H magnetization around an effective field tilted with an angle θ from the B(0) axis. The TIMES(0) sequence benefits from very large chemical shift scaling factors at ultra-fast MAS that reach κ(cs)=0.90 for θ=25° at ν(r)=80kHz MAS and only four adjustable parameters, resulting in easy setup. Long κ(cs)T(2)(') values, where T(2)(') is a irreversible proton transverse relaxation time, greatly enhance the sensitivity in (1)H-{(13)C} through-bond J-HMQC (Heteronuclear Multiple-Quantum Coherence) measurements with (1)H-(1)H decoupling during magnetization transfer periods. Although similar sensitivity can be obtained with through-space D-HMQC sequences, in which (13)C-(1)H dipolar interactions are recoupled, J-HMQC experiments incorporating (1)H-(1)H decoupling benefit from lower t(1)-noise, more uniform excitation of both CH, CH(2) and CH(3) moieties, and easier identification of through-bond connectivities.  相似文献   

4.
We tested the performance of several (13)C homonuclear mixing sequences on perdeuterated microcrystalline ubiquitin. All sequences were applied without (1)H decoupling and at relatively low MAS frequencies. We found that RFDR gave the highest overall transfer efficiency and that DREAM performs surprisingly well under these conditions being twice as efficient in the aliphatic region of the spectrum than the other mixing sequences tested.  相似文献   

5.
The use of continuous-wave (CW) 1H decoupling has generally provided little improvement in the 13C MAS NMR spectroscopy of paramagnetic organic solids. Recent solid-state 13C NMR studies have demonstrated that at rapid magic-angle spinning rates CW decoupling can result in reductions in signal-to-noise and that 1H decoupling should be omitted when acquiring 13C MAS NMR spectra of paramagnetic solids. However, studies of the effectiveness of modern 1H decoupling sequences are lacking, and the performance of such sequences over a variety of experimental conditions must be investigated before 1H decoupling is discounted altogether. We have studied the performance of several commonly used advanced decoupling pulse sequences, namely the TPPM, SPINAL-64, XiX, and eDROOPY sequences, in 13C MAS NMR experiments performed under four combinations of the magnetic field strength (7.05 or 11.75T), rotor frequency (15 or 30kHz), and 1H rf-field strength (71, 100, or 140kHz). The effectiveness of these sequences has been evaluated by comparing the 13C signal intensity, linewidth at half-height, LWHH, and coherence lifetimes, T2('), of the methine carbon of copper(II) bis(dl-alanine) monohydrate, Cu(ala)(2).H2O, and methylene carbon of copper(II) bis(dl-2-aminobutyrate), Cu(ambut)(2), obtained with the advanced sequences to those obtained without 1H decoupling, with CW decoupling, and for fully deuterium labelled samples. The latter have been used as model compounds with perfect 1H decoupling and provide a measure of the efficiency of the 1H decoupling sequence. Overall, the effectiveness of 1H decoupling depends strongly on the decoupling sequence utilized, the experimental conditions and the sample studied. Of the decoupling sequences studied, the XiX sequence consistently yielded the best results, although any of the advanced decoupling sequences strongly outperformed the CW sequence and provided improvements over no 1H decoupling. Experiments performed at 7.05T demonstrate that the XiX decoupling sequence is the least sensitive to changes in the 1H transmitter frequency and may explain the superior performance of this decoupling sequence. Overall, the most important factor in the effectiveness of 1H decoupling was the carbon type studied, with the methylene carbon of Cu(ambut)(2) being substantially more sensitive to 1H decoupling than the methine carbon of Cu(ala)(2).H2O. An analysis of the various broadening mechanisms contributing to 13C linewidths has been performed in order to rationalize the different sensitivities of the two carbon sites under the four experimental conditions.  相似文献   

6.
A combination of techniques, including rational number synchronisation and pre-diagonalisation of the time-dependent periodic Hamiltonian, are described which allow the efficient simulation of NMR experiments involving both magic-angle spinning (MAS) and RF irradiation, particularly in the important special case of phase-modulated decoupling sequences. Chebyshev and conventional diagonalisation approaches to calculating propagators under MAS are also compared, with Chebyshev methods offering significant advantages in cases where the Hamiltonian is large and time-dependent but not block-diagonal (as is the case for problems involving combined MAS and RF). The ability to simulate extended coupled spin systems efficiently allows 1H spectra under homonuclear decoupling to be calculated directly and compared to experimental results. Reasonable agreement is found for the conditions under which homonuclear decoupling is typically applied for rigid solids (although the increasing deviation of experimental results from the predictions of theory and simulation at higher RF powers is still unexplained). Numerical simulations are used to explore three features of these experiments: the interaction between the magic-angle spinning and RF decoupling, the effects of tilt pulses in acquisition windows and the effects of "phase propagation delays" on tilted axis precession. In each case, the results reveal features that are not readily anticipated by previous analytical studies and shed light on previous empirical observations.  相似文献   

7.
We describe new correlation experiments suitable for determining long-range 1H-1H distances in 2H,15N-labeled peptides and proteins. The approach uses perdeuteration together with back substitution of exchangeable protons during sample preparation as a means of attenuating the strong 1H-1H dipolar couplings that broaden 1H magic angle spinning (MAS) spectra of solids. In the approach described here, we retain 100% of the 1H sensitivity by labeling and detecting all exchangeable sites. This is in contrast to homonuclear multiple pulse decoupling sequences that are applied during detection and that compromise sensitivity because of the requirement of sampling between pulses. As a result 1H detection provides a gain in sensitivity of >5 compared to the 15N detected version of the experiment (at a MAS frequency of 13.5kHz). The pulse schemes make use of the favorable dispersion of the amide 15Ns resonances in the protein backbone. The experiments are demonstrated on a sample of the uniformly 2H,15N-labeled dipeptide N-Ac-Val-Leu-OH and are analogous to the solution-state suite of HSQC-NOESY experiments. In this compound the 1H amide linewidths at 750MHz vary from approximately 0.67 ppm at omega(r)/2pi approximately 5kHz to approximately 0.20 ppm at omega(r)/2pi approximately 30kHz, indicating that useful resolution is available in the 1H spectrum via this approach. Since the experiments circumvent the problem of dipolar truncation in the 1H-1H spin system, they should make it possible to measure long-range distances in a uniformly labeled environment. Thus, we expect the experiments to be useful in constraining the global fold of a protein.  相似文献   

8.
High resolution 2D NMR MAS spectra of liposomes, in particular 1H-13C chemical shifts correlations have been obtained on fluid lipid bilayers made of pure phospholipids for several years. We have investigated herein the possibility to obtain high resolution 2D MAS spectra of cholesterol embedded in membranes, i.e. on a rigid molecule whose dynamics is characterized mainly by axial diffusion without internal segmental mobility. The efficiency of various pulse sequences for heteronuclear HETCOR has been compared in terms of resolution, sensitivity and selectivity, using either cross polarization or INEPT for coherence transfer, and with or without MREV-8 homonuclear decoupling during t1. At moderately high spinning speed (9 kHz), a similar resolution is obtained in all cases (0.2 ppm for 1H(3,4), 0.15 ppm for 13C(3,4) cholesterol resonances), while sensitivity increases in the order: INEPT < CP(x4) < CP + MREV. At reduced spinning speed (5 kHz), the homonuclear dipolar coupling between the two geminal protons attached to C(4) gives rise to spinning sidebands from which one can estimate a H-H dipolar coupling of 10 kHz which is in good agreement with the known dynamics of cholesterol in membranes.  相似文献   

9.
(13)C cross polarization magic angle spinning (CP-MAS) and (1)H MAS NMR spectra were collected on egg sphingomyelin (SM) bilayers containing cholesterol above and below the liquid crystalline phase transition temperature (T(m)). Two-dimensional (2D) dipolar heteronuclear correlation (HETCOR) spectra were obtained on SM bilayers in the liquid crystalline (L(alpha)) state for the first time and display improved resolution and chemical shift dispersion compared to the individual (1)H and (13)C spectra and significantly aid in spectral assignment. In the gel (L(beta)) state, the (1)H dimension suffers from line broadening due to the (1)H-(1)H homonuclear dipolar coupling that is not completely averaged by the combination of lipid mobility and MAS. This line broadening is significantly suppressed by implementing frequency switched Lee-Goldburg (FSLG) homonuclear (1)H decoupling during the evolution period. In the liquid crystalline (L(alpha)) phase, no improvement in line width is observed when FSLG is employed. All of the observed resonances are assignable to cholesterol and SM environments. This study demonstrates the ability to obtain 2D heteronuclear correlation experiments in the gel state for biomembranes, expands on previous SM assignments, and presents a comprehensive (1)H/(13)C NMR assignment of SM bilayers containing cholesterol. Comparisons are made to a previous report on cholesterol chemical shifts in dimyristoylphosphatidylcholine (DMPC) bilayers. A number of similarities and some differences are observed and discussed.  相似文献   

10.
In this Communication, we demonstrate the use of deuteration together with back substitution of exchangeable protons as a means of attenuating the strong 1H-1H couplings that broaden 1H magic angle spinning (MAS) spectra of solids. The approach facilitates 15N-1H correlation experiments as well as experiments for the measurement of 1H-1H distances. The distance measurement relies on the excellent resolution in the 1H MAS spectrum and homonuclear double quantum recoupling techniques. The 1H-1H dipolar recoupling can be analyzed in an analytical fashion by fitting the data to a 2- or 3-spin system. The experiments are performed on a sample of the dipeptide N-Ac-Val-Leu-OH, which was synthesized from uniformly [2H, 15N] labeled materials and back-exchanged in H2O.  相似文献   

11.
Schemes such as phase-modulated Lee–Goldburg (PMLG) for homonuclear dipolar decoupling have been shown to yield high-resolution 1H spectra at high magic-angle spinning (MAS) frequencies of 50–70 kHz. This is at variance to the commonly held notion that these methods require MAS frequencies not comparable to the cycle frequencies of the pulse schemes. Here, a theoretical argument, based on bimodal Floquet theory, is presented to explain this aspect together with conditions where PMLG type of schemes may be successful at high MAS frequencies.  相似文献   

12.
Triple-resonance experiments capable of correlating directly bonded and proximate carbon and nitrogen backbone sites of uniformly 13C- and 15N-labeled peptides in stationary oriented samples are described. The pulse sequences integrate cross-polarization from 1H to 13C and from 13C to 15N with flip-flop (phase and frequency switched) Lee-Goldburg irradiation for both 13C homonuclear decoupling and 1H-15N spin exchange at the magic angle. Because heteronuclear decoupling is applied throughout, the three-dimensional pulse sequence yields 13C shift/1H-15N coupling/15N shift correlation spectra with single-line resonances in all three frequency dimensions. Not only do the three-dimensional spectra correlate 13C and 15N resonances, they are well resolved due to the three independent frequency dimensions, and they can provide up to four orientationally dependent frequencies as input for structure determination. These experiments have the potential to make sequential backbone resonance assignments in uniformly 13C- and 15N-labeled proteins.  相似文献   

13.
We compare in this communication several heteronuclear dipolar decoupling sequences in solid-state nuclear magnetic resonance experiments under a magic-angle spinning frequency of 60 kHz. The decoupling radiofrequency field amplitudes considered are 190 and 10 kHz. No substantial difference was found among the sequences considered here in performance barring the difference in the optimisation protocol of the various schemes, an aspect that favours the use of swept-frequency two pulse phase modulation (SW(f)-TPPM).  相似文献   

14.
Novel procedures for the spectral assignment of peaks in high-resolution solid-state (13)C NMR are discussed and demonstrated. These methods are based on the observation that at moderate and already widely available rates of magic-angle spinning (10--14 kHz MAS), CH and CH(2) moieties behave to a large extent as if they were effectively isolated from the surrounding proton reservoir. Dipolar-based analogs of editing techniques that are commonly used in liquid-state NMR such as APT and INEPT can then be derived, while avoiding the need for periods of homonuclear (1)H--(1)H multipulse decoupling. The resulting experiments end up being very simple, essentially tuning-free, and capable of establishing unambiguous distinctions among CH, CH(2), and --C--/-CH(3) carbon sites. The principles underlying such sequences were explored using both numerical calculations and experimental measurements, and once validated their editing applications were illustrated on a number of compounds.  相似文献   

15.
In solid-state NMR studies of minerals and ion conductors, quadrupolar nuclei like 7Li, 23Na or 133Cs are frequently situated in close proximity to fluorine, so that application of 19F decoupling is beneficial for spectral resolution. Here, we compare the decoupling efficiency of various multi-pulse decoupling sequences by acquiring 19F-decoupled 23Na-NMR spectra of cryolite (Na3AlF6). Whereas the MAS spectrum is only marginally affected by application of 19F decoupling, the 3Q-filtered 23Na signal is very sensitive to it, as the de-phasing caused by the dipolar interaction between sodium and fluorine is three-fold magnified. Experimentally, we find that at moderate MAS speeds, the decoupling efficiencies of the frequency-swept decoupling schemes SWf-TPPM and SWf-SPINAL are significantly better than the conventional TPPM and SPINAL sequences. The frequency-swept sequences are therefore the methods of choice for efficient decoupling of quadrupolar nuclei with half-integer spin from fluorine.  相似文献   

16.
Substantial resolution and sensitivity enhancements of solid-state (1)H detected (14)N HMQC NMR spectra at very fast MAS rates up to 80 kHz, in a 1mm MAS rotor, are presented. Very fast MAS enhances the (1)H transverse relaxation time and efficiently decouples the (1)H-(14)N interactions, both effects leading to resolution enhancement. The micro-coil contributes to the sensitivity increase via strong (14)N rf fields and high sensitivity per unit volume. (1)H-(14)N HMQC 2D spectra of glycine and glycyl-L-alanine at 70 kHz MAS at 11.7 T are observed in a few minutes with a sample volume of 0.8 μL.  相似文献   

17.
Two-dimensional indirectly detected through-space and through-bond 1H{15N} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse 1H decoupling are evaluated. Remarkable efficiency of polarization transfer can be achieved at a MAS rate of 40 kHz by both cross-polarization and INEPT, which makes these methods applicable for routine characterizations of natural abundance solids. The first measurement of 2D 1H{15N} HETCOR spectrum of natural abundance surface species is also reported.  相似文献   

18.
王明安  吕冬 《波谱学杂志》1998,15(4):371-374
1H-1H COSY,13C-1H COSY,HMBC,NOESY,DEPT以及同核去偶技术,表征了芳香维甲酸乙酯的化学结构,对其1H NMR,13C NMR化学位移进行了指认.  相似文献   

19.
In this paper we demonstrate experimentally that the continuously phase-modulated homonuclear decoupling sequence DUMBO-1 is suitable for high-resolution proton NMR spectroscopy of rigid solids. Over a wide range of experimental conditions, we show on the model sample L-alanine as well as on small peptides that proton linewidths of less than 0.5 ppm can be obtained under DUMBO-1 decoupling. In particular the DUMBO-1 sequence yields well resolved proton spectra both at slow and fast MAS. The DUMBO-1 decoupling scheme can in principle be inserted in any multi-nuclear or multi-dimensional solid-state NMR experiment which requires a high-resolution 1H dimension. An example is provided with the 13C-1H MAS-J-HMQC experiment.  相似文献   

20.
Aiming to improve heteronuclear spin decoupling efficiency in NMR spectroscopy of solids and liquid crystals, we have modified the original Small Phase Incremental ALteration (SPINAL) sequence by incorporating a frequency sweep into it. For the resulting sequence, termed SWf-SPINAL, the decoupling performance of a large number of sweep variants was explored by both numerical simulations and NMR experiments. It is found that introducing a frequency sweep generally increases both the ‘on-resonance’ decoupling performance and the robustness towards parameter offsets compared to the original SPINAL sequence. This validates the concept of extending the range of efficient decoupling by introducing frequency sweeps, which was recently suggested in the context of the frequency-swept SWf-TPPM method. The sequence found to be best performing among the SWf-SPINAL variants consists of fully swept 16 pulse pairs and is designated (32)-SPINAL-32. Its good decoupling performance for rigid spin systems is confirmed by numerical simulations and also experimentally, by evaluating the CH2 resonance of a powder sample of l-tyrosine under MAS. For moderate MAS frequencies, the new sequence matches the decoupling achieved with SWf-TPPM, and outperforms all other tested sequences, including TPPM and SPINAL-64. (32)-SPINAL-32 also shows excellent decoupling characteristics for liquid crystalline systems, as exemplified by experiments on the 5CB liquid crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号