首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review, we introduce some methods for detecting or measuring entanglement. Several nonlinear entanglement witnesses are presented. We derive a series of Bell inequalities whose maximally violations for any multipartite qubit states can be calculated by using our formulas. Both the nonlinear entanglement witnesses and the Bell inequalities can be operated experimentally. Thus they supply an effective way for detecting entanglement. We also introduce some experimental methods to measure the entanglement of formation, and the lower bound of the convex-roof extension of negativity.  相似文献   

2.
We propose a simple quantum network to detect multipartite entangled states of bosons and show how to implement this network for neutral atoms stored in an optical lattice. We investigate the special properties of cluster states, multipartite entangled states, and superpositions of distinct macroscopic quantum states that can be identified by the network.  相似文献   

3.
Progress in multiphoton interferometry allows us now to observe even six-photon interference of a very high contrast. Also, it is possible to observe interference of two photons originating from truly independent sources. Non-classical effects may violate Bell inequalities, or reveal quantum non-separability. Methods of producing non-classical states of few photons, and the detection of entanglement via Bell inequalities, or via nor-separability criteria will be presented. Implications of violations of Bell inequalities will be discussed, with a special stress on over-interpretations of this fact.  相似文献   

4.
In a ferromagnetic spin chain, the control of the local effective magnetic field allows us to manipulate the static and dynamical properties of entanglement. In particular, the propagation of quantum correlations can be driven to a great extent so as to achieve an entanglement transfer on demand toward a selected site.  相似文献   

5.
Basing on positive maps separability criterion we propose the experimentally viable, direct detection of quantum entanglement. It is efficient and does not require any a priori knowledge about the state. For two qubits it provides a sharp (i.e., "if and only if") separability test and estimation of amount of entanglement. We view this method as a new form of quantum computation, namely, as a decision problem with quantum data structure.  相似文献   

6.
We provide a first operational method for checking local indistinguishability of orthogonal states. It originates from that in Ghosh et al. [Phys. Rev. Lett. 87, 5807 (2001)]], though we deal with pure states. Our method shows that probabilistic local distinguishing is possible for a complete multipartite orthogonal basis if and only if all vectors are product. Also, it leads to local indistinguishability of a set of orthogonal pure states of 3 multiply sign in circle 3, which shows that one can have more nonlocality with less entanglement, where "more nonlocality" is in the sense of "increased local indistinguishability of orthogonal states." This is, to our knowledge, the only known example where d orthogonal states in d multiply sign in circle d are locally indistinguishable.  相似文献   

7.
We present a multipartite entanglement purification scheme in a Greenberger-Horne-Zeilinger state for electrons based on their spins and their charges. This scheme works for purification with two steps, i.e., bit-flip error correction and phase-flip error correction. By repeating these two steps, the parties in quantum communication can get some high-fidelity multipartite entangled electronic systems.  相似文献   

8.
We present the experimental detection of genuine multipartite entanglement using entanglement witness operators. To this aim, we introduce a canonical way of constructing and decomposing witness operators so that they can be directly implemented with present technology. We apply this method to three- and four-qubit entangled states of polarized photons, giving experimental evidence that the considered states contain true multipartite entanglement.  相似文献   

9.
In this work we develop a formalism for describing localised quanta for a real-valued Klein–Gordon field in a one-dimensional box [0,R][0,R]. We quantise the field using non-stationary local modes which, at some arbitrarily chosen initial time, are completely localised within the left or the right side of the box. In this concrete set-up we directly face the problems inherent to a notion of local field excitations, usually thought of as elementary particles. Specifically, by computing the Bogoliubov coefficients relating local and standard (global) quantisations, we show that the local quantisation yields a Fock representation of the Canonical Commutation Relations (CCR) which is unitarily inequivalent   to the standard one. In spite of this, we find that the local creators and annihilators remain well defined in the global Fock space FGFG, and so do the local number operators associated to the left and right partitions of the box. We end up with a useful mathematical toolbox to analyse and characterise local features of quantum states in FGFG. Specifically, an analysis of the global vacuum state |0G〉∈FG|0GFG in terms of local number operators shows, as expected, the existence of entanglement between the left and right regions of the box. The local vacuum |0L〉∈FL|0LFL, on the contrary, has a very different character. It is neither cyclic (with respect to any local algebra of operators) nor separating and displays no entanglement between left and right partitions. Further analysis shows that the global vacuum also exhibits a distribution of local excitations reminiscent, in some respects, of a thermal bath. We discuss how the mathematical tools developed herein may open new ways for the analysis of fundamental problems in local quantum field theory.  相似文献   

10.
Quantum superposition is a fundamental principle of quantum mechanics, so it is not surprising that equal superposition states (ESS) serve as powerful resources for quantum information processing. In this work, we propose a quantum circuit that creates an arbitrary dimensional ESS. The circuit construction is efficient as the number of required elementary gates scales polynomially with the number of required qubits. For experimental realization of the method, we use techniques of nuclear magnetic resonance (NMR).We have succeeded in preparing a 9-dimensional ESS on a 4-qubit NMR quantum register. The full tomography indicates that the fidelity of our prepared state with respect to the ideal 9-dimensional ESS is over 96%. We also prove the prepared state is pseudo-entangled by directly measuring an entanglement witness operator. Our result can be useful for the implementation of those quantum algorithms that require an ESS as an input state.  相似文献   

11.
We present an entanglement concentration protocol for electrons based on their spins and their charges. The combination of an electronic polarizing beam splitter and a charge detector functions as a parity check device for two electrons, with which the parties can reconstruct maximally entangled electron pairs from those in a less-entanglement state nonlocally. This protocol has a higher efficiency than those based on linear optics and it does not require the parties to know accurately the information about the less-entanglement state, which makes it more convenient in a practical application of solid quantum computation and communication.  相似文献   

12.
In this work, we experimentally created and characterized a class of qubit-ququart PPT (positive under partial transpose) entangled states using three nuclear spins on an nuclear magnetic resonance (NMR) quantum information processor. Entanglement detection and characterization for systems with a Hilbert space dimension 2?3 is nontrivial since there are states in such systems which are both PPT as well as entangled. The experimental detection scheme that we devised for the detection of qubit-ququart PPT entanglement was based on the measurement of three Pauli operators with high precision, and is a key ingredient of the protocol in detecting entanglement. The family of PPT-entangled states considered in the current study are incoherent mixtures of five pure states. All the five states were prepared with high fidelities and the resulting PPT entangled states were prepared with mean fidelity ≥ 0.95. The entanglement thus detected was validated by carrying out full quantum state tomography (QST).  相似文献   

13.
刘炯  赵圣阳  周澜  盛宇波 《中国物理 B》2014,23(2):20313-020313
We propose an efficient entanglement concentration protocol (ECP) based on electron-spin cluster states assisted with single electrons. In the ECP, we adopt the electron polarization beam splitter (PBS) and the charge detector to construct the quantum nondemolition measurement. According to the result of the measurement of the charge detection, we can ultimately obtain the maximally entangled cluster states. Moreover, the discarded items can be reused in the next round to reach a high success probability. This ECP may be useful in current solid quantum computation.  相似文献   

14.
We present a scheme for entangling two micromechanical oscillators. The scheme exploits the quantum effects of radiation pressure and it is based on a novel application of entanglement swapping, where standard optical measurements are used to generate purely mechanical entanglement. The scheme is presented by first solving the general problem of entanglement swapping between arbitrary bipartite Gaussian states, for which simple input-output formulas are provided.  相似文献   

15.
We propose to measure the superradiance effect by observing the current through a semiconductor double-dot system. An electron and a hole are injected separately into one of the quantum dots to form an exciton and then recombine radiatively. We find that the stationary current shows oscillatory behavior as one varies the interdot distance. The amplitude of oscillation can be increased by incorporating the system into a microcavity. Furthermore, the current is suppressed if the dot distance is small compared to the wavelength of the emitted photon. This photon trapping phenomenon generates the entangled state and may be used to control the emission of single photons at predetermined times.  相似文献   

16.
When an entangled state is transformed into another one with probability one by local operations and classical communication, the quantity of entanglement decreases. This Letter shows that entanglement lost in the manipulation can be partially recovered by an auxiliary entangled pair. As an application, a maximally entangled pair can be obtained from two partially entangled pairs with probability one. Finally, this recovery scheme reveals a fundamental property of entanglement relevant to the existence of incomparable states.  相似文献   

17.
We present a scheme for entanglement purification with linear optics that works for currently available parametric down-conversion sources, in contrast to a previous scheme [J. W. Pan, Nature (London) 410, 1067 (2001)]] that relied on ideal single-pair sources. The present scheme makes use of spatial entanglement in order to purify polarization entanglement. Surprisingly, spatial entanglement as an additional resource also leads to a substantial improvement in entanglement output compared to the previous scheme.  相似文献   

18.
We propose the schemes for implementing hyperentangled state analysis and generating four-electron high entan-gled states (including cluster state, |X) state, and symmetric Dicke state) based on the charge detection of free electrons. These schemes are deterministic and rely only on charge detection and single-spin rotations. This method, which uses noninteracting electrons, is not only efficient but also saves on quantum resources.  相似文献   

19.
We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.  相似文献   

20.
It is common belief among physicists that entangled states of quantum systems lose their coherence rather quickly. The reason is that any interaction with the environment which distinguishes between the entangled sub-systems collapses the quantum state. Here we investigate entangled states of two trapped Ca+ ions and observe robust entanglement lasting for more than 20 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号