首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
In this article, we present a new multiscale discontinuous Petrov–Galerkin method (MsDPGM) for multiscale elliptic problems. This method utilizes the classical oversampling multiscale basis in the framework of a Petrov–Galerkin version of the discontinuous Galerkin method, allowing us to better cope with multiscale features in the solution. MsDPGM takes advantage of the multiscale Petrov–Galerkin method (MsPGM) and the discontinuous Galerkin method (DGM). It can eliminate the resonance error completely and decrease the computational costs of assembling the stiffness matrix, thus, allowing for more efficient solution algorithms. On the basis of a new H2 norm error estimate between the multiscale solution and the homogenized solution with the first‐order corrector, we give a detailed convergence analysis of the MsDPGM under the assumption of periodic oscillating coefficients. We also investigate a multiscale discontinuous Galerkin method (MsDGM) whose bilinear form is the same as that of the DGM but the approximation space is constructed from the classical oversampling multiscale basis functions. This method has not been analyzed theoretically or numerically in the literature yet. Numerical experiments are carried out on the multiscale elliptic problems with periodic and randomly generated log‐normal coefficients. Their results demonstrate the efficiency of the proposed method.  相似文献   

2.
We propose and analyze an application of a fully discrete C2 spline quadrature Petrov‐Galerkin method for spatial discretization of semi‐linear parabolic initial‐boundary value problems on rectangular domains. We prove second order in time and optimal order H1 norm convergence in space for the extrapolated Crank‐Nicolson quadrature Petrov‐Galerkin scheme. We demonstrate numerically both L2 and H1 norm optimal order convergence of the scheme even if the nonlinear source term is not smooth. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

3.
We propose and analyze a Crank–Nicolson quadrature Petrov–Galerkin (CNQPG) ‐spline method for solving semi‐linear second‐order hyperbolic initial‐boundary value problems. We prove second‐order convergence in time and optimal order H2 norm convergence in space for the CNQPG scheme that requires only linear algebraic solvers. We demonstrate numerically optimal order Hk, k = 0,1,2, norm convergence of the scheme for some test problems with smooth and nonsmooth nonlinearities. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

4.
In this article we consider the spectral Galerkin method with the implicit/explicit Euler scheme for the two‐dimensional Navier–Stokes equations with the L2 initial data. Due to the poor smoothness of the solution on [0,1), we use the the spectral Galerkin method based on high‐dimensional spectral space HM and small time step Δt2 on this interval. While on [1,∞), we use the spectral Galerkin method based on low‐dimensional spectral space Hm(m = O(M1/2)) and large time step Δt. For the spectral Galerkin method, we provide the standard H2‐stability and the L2‐error analysis. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

5.
In this paper, a high‐order accurate numerical method for two‐dimensional semilinear parabolic equations is presented. We apply a Galerkin–Legendre spectral method for discretizing spatial derivatives and a spectral collocation method for the time integration of the resulting nonlinear system of ordinary differential equations. Our formulation can be made arbitrarily high‐order accurate in both space and time. Optimal a priori error bound is derived in the L2‐norm for the semidiscrete formulation. Extensive numerical results are presented to demonstrate the convergence property of the method, show our formulation have spectrally accurate in both space and time. John Wiley & Sons, Ltd.  相似文献   

6.
A H1‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., (n + 1) × (n + 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where n is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.  相似文献   

7.
In this article we consider a spectral Galerkin method with a semi‐implicit Euler scheme for the two‐dimensional Navier‐Stokes equations with H2 or H1 initial data. The H2‐stability analysis of this spectral Galerkin method shows that for the smooth initial data the semi‐implicit Euler scheme admits a large time step. The L2‐error analysis of the spectral Galerkin method shows that for the smoother initial data the numerical solution u exhibits faster convergence on the time interval [0, 1] and retains the same convergence rate on the time interval [1, ∞). © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

8.
L‐error estimates for finite element for Galerkin solutions for the Benjamin‐Bona‐Mahony‐Burgers (BBMB) equation are considered. A priori bound and the semidiscrete Galerkin scheme are studied using appropriate projections. For fully discrete Galerkin schemes, we consider the backward Euler method and analyze the corresponding error estimates. For a second order accuracy in time, we propose a three‐level backward method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

9.
The generalized regularized long wave (GRLW) equation has been developed to model a variety of physical phenomena such as ion‐acoustic and magnetohydrodynamic waves in plasma, nonlinear transverse waves in shallow water and phonon packets in nonlinear crystals. This paper aims to develop and analyze a powerful numerical scheme for the nonlinear GRLW equation by Petrov–Galerkin method in which the element shape functions are cubic and weight functions are quadratic B‐splines. The proposed method is implemented to three reference problems involving propagation of the single solitary wave, interaction of two solitary waves and evolution of solitons with the Maxwellian initial condition. The variational formulation and semi‐discrete Galerkin scheme of the equation are firstly constituted. We estimate rate of convergence of such an approximation. Using Fourier stability analysis of the linearized scheme we show that the scheme is unconditionally stable. To verify practicality and robustness of the new scheme error norms L2, L and three invariants I1, I2, and I3 are calculated. The computed numerical results are compared with other published results and confirmed to be precise and effective.  相似文献   

10.
L‐error estimates for B‐spline Galerkin finite element solution of the Rosenau–Burgers equation are considered. The semidiscrete B‐spline Galerkin scheme is studied using appropriate projections. For fully discrete B‐spline Galerkin scheme, we consider the Crank–Nicolson method and analyze the corresponding error estimates in time. Numerical experiments are given to demonstrate validity and order of accuracy of the proposed method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 877–895, 2016  相似文献   

11.
Abstract

In this article, we discuss Jacobi spectral Galerkin and iterated Jacobi spectral Galerkin methods for Volterra-Urysohn integral equations with weakly singular kernels and obtain the convergence results in both the infinity and weighted L2-norm. We show that the order of convergence in iterated Jacobi spectral Galerkin method improves over Jacobi spectral Galerkin method. We obtain the convergence results in two cases when the exact solution is sufficiently smooth and non-smooth. For finding the improved convergence results, we also discuss Jacobi spectral multi-Galerkin and iterated Jacobi spectral multi-Galerkin method and obtain the convergence results in weighted L2-norm. In fact, we prove that the iterated Jacobi spectral multi-Galerkin method improves over iterated Jacobi spectral Galerkin method. We provide numerical results to verify the theoretical results.  相似文献   

12.
We use the bivariate spline finite elements to numerically solve the steady state Navier–Stokes equations. The bivariate spline finite element space we use in this article is the space of splines of smoothness r and degree 3r over triangulated quadrangulations. The stream function formulation for the steady state Navier–Stokes equations is employed. Galerkin's method is applied to the resulting nonlinear fourth‐order equation, and Newton's iterative method is then used to solve the resulting nonlinear system. We show the existence and uniqueness of the weak solution in H2(Ω) of the nonlinear fourth‐order problem and give an estimate of how fast the numerical solution converges to the weak solution. The Galerkin method with C1 cubic splines is implemented in MATLAB. Our numerical experiments show that the method is effective and efficient. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 147–183, 2000  相似文献   

13.
In the spectral Petrov‐Galerkin methods, the trial and test functions are required to satisfy particular boundary conditions. By a suitable linear combination of orthogonal polynomials, a basis, that is called the modal basis, is obtained. In this paper, we extend this idea to the nonorthogonal dual Bernstein polynomials. A compact general formula is derived for the modal basis functions based on dual Bernstein polynomials. Then, we present a Bernstein‐spectral Petrov‐Galerkin method for a class of time fractional partial differential equations with Caputo derivative. It is shown that the method leads to banded sparse linear systems for problems with constant coefficients. Some numerical examples are provided to show the efficiency and the spectral accuracy of the method.  相似文献   

14.
In this paper, we prove that the piecewise bilinear Petrov‐Galerkin discretization for the mono‐directional neutron transport equation described in (J. Comput. Phys. 1986; 64 :96–111) is convergent and second‐order accurate, provided that the true solution to the problem has continuous partial derivatives of all orders up through three. We do this by giving a bound on the 2‐norm of the inverse of the system matrix that is independent of the mesh size. This shows that the global error is of the same order as the local truncation error. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this article, we introduce a new space‐time spectral collocation method for solving the one‐dimensional sine‐Gordon equation. We apply a spectral collocation method for discretizing spatial derivatives, and then use the spectral collocation method for the time integration of the resulting nonlinear second‐order system of ordinary differential equations (ODE). Our formulation has high‐order accurate in both space and time. Optimal a priori error bounds are derived in the L2‐norm for the semidiscrete formulation. Numerical experiments show that our formulation have exponential rates of convergence in both space and time. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 670–690, 2015  相似文献   

16.
In this article, we investigate local discontinuous Galerkin approximation of stationary convection‐dominated diffusion optimal control problems with distributed control constraints. The state variable and adjoint state variable are approximated by piecewise linear polynomials without continuity requirement, whereas the control variable is discretized by variational discretization concept. The discrete first‐order optimality condition is derived. We show that optimization and discretization are commutative for the local discontinuous Galerkin approximation. Because the solutions to convection‐dominated diffusion equations often admit interior or boundary layers, residual type a posteriori error estimate in L2 norm is proved, which can be used to guide mesh refinement. Finally, numerical examples are presented to illustrate the theoretical findings. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 339–360, 2014  相似文献   

17.
In this article we apply the subdomain‐Galerkin/least squares method, which is first proposed by Chang and Gunzburger for first‐order elliptic systems without reaction terms in the plane, to solve second‐order non‐selfadjoint elliptic problems in two‐ and three‐dimensional bounded domains with triangular or tetrahedral regular triangulations. This method can be viewed as a combination of a direct cell vertex finite volume discretization step and an algebraic least‐squares minimization step in which the pressure is approximated by piecewise linear elements and the flux by the lowest order Raviart‐Thomas space. This combined approach has the advantages of both finite volume and least‐squares methods. Among other things, the combined method is not subject to the Ladyzhenskaya‐Babus?ka‐Brezzi condition, and the resulting linear system is symmetric and positive definite. An optimal error estimate in the H1(Ω) × H(div; Ω) norm is derived. An equivalent residual‐type a posteriori error estimator is also given. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 738–751, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/num.10030.  相似文献   

18.
A residual‐type a posteriori error estimator is proposed and analyzed for a modified weak Galerkin finite element method solving second‐order elliptic problems. This estimator is proven to be both reliable and efficient because it provides computable upper and lower bounds on the actual error in a discrete H1‐norm. Numerical experiments are given to illustrate the effectiveness of the this error estimator. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 381–398, 2017  相似文献   

19.
A stabilized finite element method (FEM) is presented for solving the convection–diffusion equation. We enrich the linear finite element space with local functions chosen according to the guidelines of the residual‐free bubble (RFB) FEM. In our approach, the bubble part of the solution (the microscales) is approximated via an adequate choice of discontinuous bubbles allowing static condensation. This leads to a streamline‐diffusion FEM with an explicit formula for the stability parameter τK that incorporates the flow direction, has the capability to deal with problems where there is substantial variation of the Péclet number, and gives the same limit as the RFB method. The method produces the same a priori error estimates that are typically obtained with streamline‐upwind Petrov/Galerkin and RFB. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011  相似文献   

20.
Previous works on the convergence of numerical methods for the Boussinesq problem were conducted, while the optimal L2‐norm error estimates for the velocity and temperature are still lacked. In this paper, the backward Euler scheme is used to discrete the time terms, standard Galerkin finite element method is adopted to approximate the variables. The MINI element is used to approximate the velocity and pressure, the temperature field is simulated by the linear polynomial. Under some restriction on the time step, we firstly present the optimal L2 error estimates of approximate solutions. Secondly, two‐level method based on Stokes iteration for the Boussinesq problem is developed and the corresponding convergence results are presented. By this method, the original problem is decoupled into two small linear subproblems. Compared with the standard Galerkin method, the two‐level method not only keeps good accuracy but also saves a lot of computational cost. Finally, some numerical examples are provided to support the established theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号