首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new form of the asymmetric cis isomer of the nitric oxide dimer, a cyclic parallelogram, has been found and characterized as the second most stable conformation by ab initio computational methods. Optimum equilibrium geometries, energetics, and harmonic frequencies are computed for the cyclic structure and the more common symmetric cis and trans isomers at the levels of second-order perturbation theory (MP2) and coupled-cluster theory limited to double excitations (CCD) using the 6-311G(2d) and 6-311+G(2d) basis sets. Single-point, more highly correlated calculations are then performed at these CCD optimum geometries. In addition, second-order geometries and frequencies are computed using the larger 6-311G(3df) basis, and single-point MP2 calculations are performed at these geometries using the Aug-cc-pVTZ and Aug-cc-pVQZ basis sets. At the highest levels of theory considered, the cyclic isomer lies within 17 kJ/mol of the symmetric cis global minimum and is more stable than the often-studied symmetric trans conformation.  相似文献   

2.
We made ab initio electronic calculations of the structure and energetics of mixed hypermetalated hydrogen oxides, Li2NaOH and LiNa2OH. There exist five equilibrium geometries for each complex. In all levels of calculation the global minimum structure for Li2NaOH has C2v symmetry and a large distance between sodium and oxygen, 4.24 Å (MP2/6-31G*). The dissociation energies to all possible products were also calculated. Li2NaOH → Na + Li2OH δH = +25.33 kcal/mol (at MP4/6-311++G**//6-31G* + ZPE scaled by 0.9). All other dissociation processes are highly endothermic. Similar procedures were applied to LiNa2OH. The global minimum structure for LiNa2OH belongs to point group Cs. It is also endothermic to all possible dissociation paths. LiNa2OH →Na + LiNaOH δH = +12.72 kcal/mol (at MP4/6-311++G*//6-31G* + ZPE scaled by 0.9). The nuclear repulsion energy is crucial in energetics of the structures. The distribution of electron density and bonding properties for these equilibrium structures were analyzed.  相似文献   

3.
The gem-dimethyl effect is the acceleration of cyclization by substituents in the chain and is often used in organic synthesis as a ring-closing effect. Calculations on cyclobutane, methylcyclobutane, and 1,1-dimethylcyclobutane are performed. 1,1-Dimethylcyclobutane is a four-membered carbon ring with gem-dimethyl substituents. Optimum equilibrium geometries, harmonic vibrational frequencies, and corresponding electronic energies are computed for all pertinent molecular systems using SCF theory, density functional theory (DFT), and second-order perturbation theory (MP2) with two triple-zeta quality basis sets, 6-311G(d,p) and 6-311G+(2df,2pd). Additional single-point calculations are performed using the optimized MP2/6-311G+(2df,2pd) geometries and coupled-cluster theory including single and double excitations and noniterative, linear triple excitations (CCSD(T)). Calculations indicate that 1,1-dimethylcyclobutane is more than 8 kcal mol-1 less strained than cyclobutane, that is, there is at least some thermodynamic component to the gem-dimethyl effect.  相似文献   

4.
The equilibrium geometries and fundamental frequencies of Na2S are calculated at HF, MP2(FC, FU), and MP3 with the 6–31G(d) basis set and at HF and MP2(FC, FU) with the 6–31G(d) basis set, respectively. The total energy at MP2(FU)/6–31G(d)-optimized geometry is computed at MP4 with 6–311G(d, p), 6–311 + G(d, p), and 6–311G(2df, p), at QCISD(T)/6–311G(d, p), and at MP2/6–311G(3df, 2p) levels, respectively. The dissociation energy, the atomization energy, and the heat of formation for Na2S are evaluated using the G1 and G2 models. The calculated results indicated that Na2S in its ground state was a bent structure (C2v). Electron correlation corrections on the bending angle are very significant. The equilibrium geometrical parameters are Re(Na-S) = 2.45 Å and ∠Na-S-Na = 111.13° at the MP2(FU)/6–31G(d) level. The theoretically estimated dissociation energy, total atomization energy, and heat of formation are 67.07, 117.55, and 0.35 kcal mol−1, respectively, at 298.15 K. © 1997 John Wiley & Sons, Inc.  相似文献   

5.
Optimum geometries of planar and 90°-twisted C2v calicene are calculated with single-configuration STO-3G and 3-21-G wavefunctions. The barrier to ring–ring rotation is computed. Bond alternation is pronounced in the planar form and decreases in the twisted form, while dipolar character increases on twisting.  相似文献   

6.
A theoretical study on the mechanism of the OH + aliphatic thiols reactions is presented. Optimum geometries and frequencies have been computed at the BHandHLYP/6-311++G(2d,2p) level of theory for all stationary points. Energy values have been improved by single-point calculations at the above geometries using CCSD(T)/6-311++G(d,p). Twelve possible channels have been modeled, three of them including the possible influence of molecular oxygen, and three of them involving excess of OH. The only channels that have been found to significantly contribute to the overall reaction in the troposphere are the hydrogen abstractions from the -SH group and from the alkyl groups. Our analysis supports a stepwise mechanism involving the formation of a short-lived, weakly bonded adduct in the entrance channel, for the abstraction paths. The results proposed in the present work seem to provide a viable explanation for diverse findings previously reported from experimental investigations.  相似文献   

7.
The structural properties and intramolecular hydrogen bonding of a series of structures of naphthazarin molecule were investigated by ab initio HF-SCF methods. The geometries of theC 2v ,C 2h ,D 2h , andC s symmetry structures were optimized using split-valence basis sets. MP2/6-31G*// HF/6-31G single-point energy calculations indicate that theC 2v isomer (5,8-dihydroxy-1,4-naphthoquinone) is the lowest energy structure of the molecule and that theC 2h symmetry one (4,8-dihydroxy-1,5-naphthoquinone), lying 37 kJ/mol above theC 2v form, is the other stable isomer of naphthazarin. At the HF/6-31G level, the intramolecular proton exchange between two equivalentC 2v structures is a two-step process where each proton can be independently transferred through an unsymmetrical potential having a 1,5-quinone intermediate, theC 2h symmetry structure, and two equivalent transition states ofC s symmetry, with a barrier height equal to 38 kJ/ mol (MP2/6-31G*//HF/6-31G). The study of naphthazarin molecule is flanked by a theoretical investigation on theC 2v andC 2h isomers of the parent naphthoquinone and dihydroxynaphthalene molecules. The SCF vibrational spectrum of the ground state of naphthazarin, harmonic frequencies, and infrared and Raman band intensities were computed at the HF/6-31G level. The results of the calculations are compared with the matrix isolation FT-IR spectroscopy measurements and with the infrared and Raman spectra of the crystal molecule.  相似文献   

8.
Optimum geometries and harmonic frequencies calculated at the Hartree–Fock and the MP2 level are reported for the fluorohydrocarbon CHF2CH3; basis sets employed range from STO-3G to 6-311G**. The significantly shortened C? C distance of 1.50 Å is reproduced already with the simplest split-valence basis set; the C? F distance of 1.36 Å on the other hand needs MP2 correction at least at the double-ζ or 6-311G* level. Symmetry coordinates defined in terms of internal coordinates are in qualitative agreement with available experimental evidence. Even the best basis set yields frequencies that differ from experimental (anharmonic) values by up to 200 cm?1 indicating the well-known necessity of including higher-order force constants if quantitative agreement with experiment is to be achieved.  相似文献   

9.
分别在DFT-B3LYP和MP2/6-311++G**水平上求得HOCl + N2O复合物势能面上的六种(S1, S2, S3, S4, S5和S6)和四种(S1, S2, S4和S5)构型. 频率分析表明,其中的S1和S3为过渡态,其它为稳定构型. 在复合物S3, S5 和S6中,HOCl 单体的σ*(5O-6H)作为质子供体,与N2O单体中作为质子受体的3O原子相互作用,形成氢键结构,而在氢键复合物S2中, 质子受体为N2O单体中的端1N原子;复合物S1中,HOCl分子的σ*(5O-4Cl)作为质子供体与N2O分子中的端1N原子(质子受体)相互作用,形成卤键结构,而复合物S4中的卤键结构的质子受体为N2O分子中的端3O原子. 经B3LYP/6-311++G**水平上的计算,考虑了基组重叠误差(BSSE)校正的单体间相互作用能在-1.56 ~ -8.73 kJ·mol-1之间. 采用自然键轨道理论(NBO)对两种单体间相互作用的本质进行了考查,并通过分子中原子理论(AIM)分析了复合物中氢键和卤键键鞍点处的电子密度拓扑性质.  相似文献   

10.
Potential energy curves allow us to probe the flexibility of butyl acrylate molecule. We found two local minima belonging to Cs symmetry for s-cis and s-trans conformations. The optimized geometries at RHF and DFT using extended basis set are in good agreement with electron diffraction data of methyl acrylate, and the s-cis is the most stable form. Ab initio calculations of harmonic frequencies at the fully optimized geometries of the planar s-cis and s-trans conformers have been performed at the DFT//B3LYP/6-311+G** level of theory. Scaled harmonic frequencies and potential energy distribution are used for the assignment of the experimental IR and Raman bands. We noticed an acceptable qualitative agreement between the experimental and the computed spectra.  相似文献   

11.
The conventional strain energies of 1,2-dihydroazete, 2,3-dihydroazete, 1,2-dihydrophosphete, and 2,3-dihydrophosphete are determined within the isodesmic, homodesmotic, and hyperhomodesmotic models. Optimum equilibrium geometries, harmonic vibrational frequencies, and corresponding electronic energies and zero-point vibrational energies are computed for all pertinent molecular systems using SCF theory, second-order perturbation theory, and density functional theory and employing the correlation consistent basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ. Single-point fourth-order perturbation theory, CCSD, and CCSD(T) calculations employing the cc-pVTZ and the cc-pVQZ basis sets are computed using the MP2/cc-pVTZ and MP2/cc-pVQZ optimized geometries, respectfully, to ascertain the contribution of higher order correlation. Three DFT functionals, B3LYP, wB97XD, and M06-2X, are employed to determine whether they can yield results similar to those obtained at the CCSD(T) level.  相似文献   

12.
Conformational search of 12-thiacrown-4, 12t4, was performed using the CONFLEX method and the MMFF94S force field whereby 156 conformations were predicted. Optimized geometries of the 156 predicted conformations were calculated at the HF, B3LYP, CAM-B3LYP, M06, M06L, M062x and M06HF levels using the 6-311G** basis set. The correlation energy was recovered at the MP2 level using the same 6-311G** basis set. Optimized geometries at the MP2/6-311G** level and G3MP2 energies were calculated for some of the low energy conformations. The D 4 conformation was predicted to be the ground state conformation at all levels of theory considered in this work. Comparison between the dihedral angles of the predicted conformations indicated that for the stability of 12t4, a SCCS dihedral angle of 180° requirement is more important than a gauche CSCC dihedral angle requirement. Conformational search was performed also for the 12t4?CAg+, Bi3+, Cd2+, Cu+ and Sb3+ cation metal complexes using the CONFLEX method and the CAChe-augmented MM3 and MMFF94S force fields. Conformations with relative energies less than 10?kcal/mol at the MP2/6-31+G*//HF/6-31+G* level, with double zeta quality basis set on the metal cations, were considered for computations at the same levels as those used for free 12t4, using also the 6-311G** basis set. The cc-pVTZ-pp basis set was used for the metal cations. The predicted ground state conformations of the 12t4?CAg+, Bi3+, Cd2+, Cu+ and Sb3+ cation metal complexes are the C 4, C 4, C 4, C 2v and C 4 conformations, respectively. This is in agreement with the experimental X-ray data for the 12t4?CAg+ and Cd2+ cation metal complexes, but experimentally by X-ray, the 12t4?CBi3+ and Cu+ cation metal complexes have C s and C 4 structures, respectively.  相似文献   

13.
A reliable computational method for the prediction of organoselenium geometries and bond dissociation energies (BDEs) has been determined on the basis of the performance of density functional theory (DFT: B3LYP and B3PW91) and ab initio molecular orbital procedures (Hartree-Fock (HF)) in conjunction with various Pople basis sets including (but not limited to) the 6-31G(d), 6-31G(d,p), 6-311G(d), 6-311G(d,p), 6-311G(2df,p), and 6-311G(3df,3pd) sets. Predicted geometries and BDEs are compared with available experimental data and quadratic configuration interaction including single and double substitutions (QCISD) results. The B3PW91/6-311G(2df,p) level of theory is recommended for the prediction of the geometries and energetics of organoselenium compounds.  相似文献   

14.
Optimized geometries, HOMO–LUMO gaps, vertical ionization potentials and electron affinities are obtained using HF, and B3LYP methods with 6-311G** basis set for C20H20, Si20H20 and Ge20H20. For germanium and tin analogues, B3LYP calculations are performed with LANL2DZ effective core potential. Electron correlation is included by doing MP2 calculation. The harmonic frequencies of all the compounds are obtained using B3LYP with 6-311G** and/or LANL2DZ basis sets. The force field and vibrational spectra are analyzed and 74 symmetry unique non-redundant local force constants are evaluated. Probable assignments are proposed for all the fundamentals based on the potential energy distribution.  相似文献   

15.
The reaction of acetonitrile with hydroxyl has been studied using the direct ab initio dynamics methods. The geometries, vibrational frequencies of the stationary points, as well as the minimum energy paths were computed at the BHandHLYP and MP2 levels of theory with the 6-311G(d, p) basis set. The energies were further refined at the PMP4/6-311+G(2df, 2pd) and QCISD(T)/6-311+G(2df, 2pd) levels of theory based on the structures optimized at BHandHLYP/6-311G(d, p) and MP2/6-311G(d, p) levels of theory. The Polyrate 8.2 program was employed to predict the thermal rate constants using the canonical variational transition state theory incorporating a small-curvature tunneling correction. The computed rate constants are in good agreement with the available experimental data.  相似文献   

16.
2‐Formylthiophene‐N‐acetylhydrazone (Hait) and 2‐thiophenecarboxaldehyde‐2‐thienylhydrazone (Htit) in the cis and trans conformations were investigated in the gas‐phase by density functional method using B3LYP as the functional set and 6‐311++G(d,p) as the basis set. The cis and trans structures were fully optimized in the C1 and Cs symmetries. Transition states were also modeled for the cis–trans isomerization of the title compounds and the barriers to internal rotation were calculated. This work reports the structural, energetics, and spectroscopic parameters of all the optimized geometries. Some of the structural parameters are in good agreement with experimental literature data. The computed parameters for these compounds are also in good agreement with a related molecule, namely, acetohydrazide. For both Hait and Htit, the trans conformers are more stable than the cis conformers and the energy barriers are larger compared with the energy differences between the cis and trans conformers. This accounts for Hait and Htit existing mostly in the trans conformation. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:144–150, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20526  相似文献   

17.
The low-lying singlet and triplet states of H2CBe and HCBeH are examined using ab inito molecular orbital theory. In agreement with earlier results, the lowest-lying structure of H2CBe has C2v symmetry and is a triplet with one π electron (3 B1). The results presented here suggest that the lowest-energy singlet structure is the (1B1) open-shell singlet, also with C2v symmetry, at least 2.5 kcal/mol higher in energy. The singlet C2v structure with two π electrons (1A1) is 15.9 kcal/mol higher than 3B1. All of these structures are bound with respect to the ground state of methylene and the beryllium atom. In HCBeH, linear equilibrium geometries are found for the triplet (3Σ) and singlet (1Δ) states. The triplet is more stable than the singlet (1Δ) by 35.4 kcal/mol, and is only 2.9 kcal/mol higher in energy than triplet H2 CBe. Since the transition structure connecting these two triplet molecules is found to be 50.2 kcal/mol higher in energy than H2 CBe, both triplet equilibrium species might exist independently. The harmonic vibrational frequencies of all structures are also reported.  相似文献   

18.
The structures, energetics, spectral parameters and stability of the singlet SiCP2 isomers are explored at the density functional theory and ab initio levels. Eight isomers connected by ten interconversion transition states are located at the CCSD(T)/6-311G(2d)//B3LYP/6-311G(d)level. The kinetically stable isomers and their relevant interconversion transition states are further refined at CCSD(T)/6-311+G(2df)//QCISD/6-311G(d) level. At QCISD/6-311G(d) level, one four-membered ring isomer cSiPCP and two linear structures PSiCP, SiCPP possess considerable kinetic stability (more than 15 kcal/mol). The valence bond structures of three kinetically stable SiCP2 isomers are analyzed. The similarities and discrepancies in structure, energy and stability between SiCP2 and its analogous C2P2, Si2P2, SiCN2 and CSiNP molecules are also discussed. The predicted structures and spectroscopic properties are expected to be informative for the identification of the SiCP2 in the laboratory and space.  相似文献   

19.
《Chemical physics》1986,107(1):25-31
The results of a comparative theoretical study of the dipole moment derivatives and infrared absorption intensities within the double harmonic approximation are presented for the isoelectronic, isostructural C2v molecules: H2F+, H2O and NH2. The calculations, performed at the ab initio SCF and CI levels of theory, utilize basis sets of triple zeta+two polarization functions quality. For the ions H2F+ and NH2, in the absence of adequate experimental data the equilibrium geometries and force constants were also calculated. The trends observed in the dipole moment derivatives for the three systems are indicative of the amount of electronic charge associated with the hydrogen atoms and are very similar to the trends noted for a set of C3v hydrides.  相似文献   

20.
The conventional strain energies for azetidine and phosphetane are determined within the isodesmic, homodesmotic, and hyperhomodesmotic models. Optimum equilibrium geometries, harmonic vibrational frequencies, and corresponding electronic energies and zero‐point vibrational energies are computed for all pertinent molecular systems using self‐consistent field theory, second‐order perturbation theory, and density functional theory and using the correlation consistent basis sets cc‐pVDZ, cc‐pVTZ, and cc‐pVQZ. Single point fourth‐order perturbation theory, CCSD, and CCSD(T) calculations using the cc‐pVTZ and the cc‐pVQZ basis sets are computed using the MP2/cc‐pVTZ and MP2/cc‐pVQZ optimized geometries, respectively, to ascertain the contribution of higher order correlation effects and to determine if the quadruple‐zeta valence basis set is needed when higher order correlation is included. In the density functional theory study, eight different functionals are used including B3LYP, wB97XD, and M06‐2X to determine if any functional can yield results similar to those obtained at the CCSD(T) level. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号