首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
One-dimensional gold/polyaniline (Au/PANI-CSA) coaxial nanocables with an average diameter of 50-60 nm and lengths of more than 1 mum were successfully synthesized by reacting aniline monomer with chlorauric acid (HAuCl(4)) through a self-assembly process in the presence of D-camphor-10-sulfonic acid (CSA), which acts as both a dopant and surfactant. It was found that the formation probability and the size of the Au/PANI-CSA nanocables depends on the molar ratio of aniline to HAuCl(4) and the concentration of CSA, respectively. A synergistic growth mechanism was proposed to interpret the formation of the Au/PANI-CSA nanocables. The directly measured conductivity of a single gold/polyaniline nanocable was found to be high (approximately 77.2 S cm(-1)). Hollow PANI-CSA nanotubes, with an average diameter of 50-60 nm, were also obtained successfully by dissolving the Au nanowire core of the Au/PANI-CSA nanocables.  相似文献   

2.
HAuCl(4) in aqueous solution was extracted to toluene or chloroform using a hydrophobically modified poly(amidoamine) dendrimer. Then, by reduction of Au(3+) ions with dimethylamineborane, gold nanoparticles in the size range of 2-4 nm were obtained in toluene or chloroform. It is suggested that gold nanoparticles are encapsulated by the dendrimer. Copyright 2000 Academic Press.  相似文献   

3.
采用二苯胺磺酸钠还原四氯合金酸的方法,在室温条件下,用SDS(十二烷基硫酸钠)、SDBS(十二烷基苯磺酸钠)作表面活性剂,成功地合成了金纳米粒子.分别讨论了还原剂二苯胺磺酸钠、表面活性剂(SDS、SDBS)及四氯台金酸的浓度等对金纳米粒子的粒径和形貌的影响.通过控制反应条件,可以合成出平均粒径大约为10、14、30、36nm的金纳米粒子.利用透射电镜(TEN)、紫外-可见(UV-Vis)吸收光谱对金纳米粒子进行了表征.研究结果表明不同的SDS或SDBS/HAuCl4的摩尔比,对金纳米粒子的尺寸大小有影响.  相似文献   

4.
Stable anisotropic gold nanoparticles were prepared by the reduction of tetrachloroauric acid with hydrazine in mixed reverse micelles formed with anionic surfactant Aerosol-OT and nonionic surfactant sorbitan monooleate (Span80) in isooctane. It was found that the Span80 serves not only as a structure modifier but also as a stabilizer for Au particles, to prevent their further growth and precipitation. The control of particle size, shape, and degree of dispersion was achieved by varying the process variables, such as molar ratio of reduction agent to metal salt, size of water droplets (omega(o)), concentration of metal salt, and sequence of addition of metal salt into the mixed reverse micelles. When the HAuCl(4) was injected directly into the mixed reversed micelles containing hydrazine, nonspherical gold nanoparticles, such as rods and cubes, were obtained at the molar ratio of hydrazine to HAuCl(4) of less than 1.0. The nonspherical Au particles were preferably formed at larger omega(o) value and lower gold salt loading. By the analyses of high-resolution electron microscope, electron diffraction pattern, and energy-dispersive X-ray analysis (EDX), the resultant particles have been found to be pure gold of face-centered cubic structure. Copyright 2000 Academic Press.  相似文献   

5.
Loading of HAuCl4 in poly(amido amine) G4 dendrimers having poly(ethylene glycol) (PEG) grafts at all chain ends and subsequent reduction with NaBH4 yielded PEG-modified dendrimers encapsulating gold nanoparticles (Au NPs) of ca. 2 nm diameter. The Au NPs held in the dendrimers were stable in aqueous solutions and dissolved readily, even after freeze-drying. Despite their small particle size, the heat-generating ability of Au NPs held in the dendrimer was comparable to that of widely used Au NPs with ca. 11 nm diameter under visible light irradiation. The observed excellent colloidal stability, high heat-generating ability and their biocompatible surface confirm that the PEG-modified dendrimers encapsulating Au NPs are a promising tool for photothermal therapy and imaging.  相似文献   

6.
利用十八胺(C18NH2)/正丁醇/正庚烷/HAuCl4(aq)W/O型微乳液体系,在常温的碱促进条件下由正丁醇原位还原氯金酸合成了具有高度单分散的憎水性金纳米粒子。由C18NH2稳定的金纳米颗粒运用紫外可见光谱(UV-vis)、透射电镜(TEM)和X射线衍射(XRD)等分别进行了表征和分析,并探讨了微乳液体系各组分对形成金纳米粒子形貌、尺寸和单分散性的影响。结果显示,随十八胺/氯金酸摩尔比的增加,金粒子的尺寸逐渐减小而单分散性逐渐提高。在正丁醇原位慢还原氯金酸的过程中,实验所选W/O型微乳液模板和表面活性剂十八胺分子对憎水性金纳米粒子的形貌和尺寸仍具有良好的控制作用。  相似文献   

7.
Three-layer composite magnetic nanoparticle probes for DNA   总被引:3,自引:0,他引:3  
A method for synthesizing composite nanoparticles with a gold shell, an Fe3O4 inner shell, and a silica core has been developed. The approach utilizes positively charged amino-modified SiO2 particles as templates for the assembly of negatively charged 15 nm superparamagnetic water-soluble Fe3O4 nanoparticles. The SiO2-Fe3O4 particles electrostatically attract 1-3 nm Au nanoparticle seeds that act in a subsequent step as nucleation sites for the formation of a continuous gold shell around the SiO2-Fe3O4 particles upon HAuCl4 reduction. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, but the magnetic properties of the Fe3O4 inner shell.  相似文献   

8.
The kinetics of the formation of gold nanoparticles on the surface of pre-illuminated TiO(2) have been investigated using stopped-flow technique and steady state UV/Vis spectroscopy. Excess electrons were loaded on the employed nanosized titanium dioxide particles by UV-A photolysis in the presence of methanol serving as hole scavenger, stored on them in the absence of oxygen and subsequently used for the reduction of Au(III) ions. The formation of gold nanoparticles with an average diameter of 5 nm was confirmed after mixing of the TiO(2) nanoparticles loaded with electrons with aqueous solution of tetrachloroaureate (HAuCl(4)) by their surface plasmon absorbance band at 530 nm, as well as by XRD and HRTEM measurements. The rate of formation of the gold nanoparticles was found to be a function of the concentration of the gold ions and the concentration of the stored electrons, respectively. The effect of PVA as a stabilizer of the gold nanoclusters was also studied. The observed kinetic behavior suggests that the formation of the gold nanoparticles on the TiO(2) surface is an autocatalytic process comprising of two main steps: 1) Reduction of the gold ions by the stored electrons on TiO(2) forming gold atoms that turn into gold nuclei. 2) Growth of the metal nuclei on the surface of TiO(2) forming the gold particles. Interestingly, at higher TiO(2) electron loading the excess electrons are subsequently transferred to the deposited gold metal particles resulting in "bleaching" of their surface plasmon band. This bleaching in the surface plasmon band is explained by the Fermi level equilibration of the Au/TiO(2) nanocomposites. Finally, the reduction of water resulting in the evolution of molecular hydrogen initiated by the excess electrons that have been transferred to the previously formed gold particles has also been observed. The mechanism of the underlying multistep electron-transfer process has been discussed in detail.  相似文献   

9.
Colloidal Au/Ag multilayer films were prepared by alternate assembly of Au nanoparticles with a size of 5 +/- 1.2 nm and Ag nanoparticles with a size of 10 +/- 2.4 nm by using 1,5-pentanedithiol as cross-linker. Nanoporous gold films with a ligament size of 26.7 +/- 4.6 nm were then prepared by selective dissolution of sacrificial templates of silver particles in colloidal Au/Ag multilayers. The complete dissolution of Ag particles in colloidal Au/Ag multilayers in a mixture solution of 3.0 mM HAuCl(4) and 3 M NaCl took place at room temperature without damage of the colloidal Au film. This method to prepare nanoporous gold films was further extended to the preparation of nanoporous gold nanotubes by depositing colloidal Au/Ag film on the inner wall of anodic aluminum oxides (AAO) followed by dissolution of colloidal Ag and removal of AAO templates.  相似文献   

10.
There has been a keen interest for developing a biologically friendly approach for the preparation of gold nanoparticles for their application reasons. A biocompatible, quick and single step method is established for the preparation of gold nanoparticles in lecithin (Egg phosphatidylcholine)/water systems where lecithin itself acts as a reductant for hydrogen tetrachloro aurate (HAuCl(4)) to form the gold nanoparticles. Small gold nanoparticles (5-7 nm in diameter) were prepared in lamellar phases formed by lecithin within 6-7h of HAuCl(4) addition. Sonication of aqueous mixture of lecithin/HAuCl(4) reduces the time of reduction process to seconds when a sonicator with probe (100 W) is used. Most of the particles are found attached to lecithin structures and are comparatively large in size. Some 10nm particles are found attached to small lecithin vesicles (~100 nm) formed during sonication. The nanoparticles formed were stabilized by an anionic surfactant sodium dodecylsulfate (SDS) which proved to be a good stabilizer, the nanoparticles being stable up to six months. To the best of our knowledge, this is the first report where a biological surfactant lecithin itself has acted as a reductant and no other chemical reductants were required for the gold nanoparticle formation. Particles were characterized by Uv-vis spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS). Lamellar phases were characterized by a polarizing microscope.  相似文献   

11.
Gold nanoparticle-doped poly(2-vinylpyridine) (P2VP) microcapsules and foam films were synthesized and assembled at the P2VP chloroform solution/HAuCl(4) aqueous solution interface at 25 °C. It was found that Au nanoparticles with the average diameter of 2.1 nm were homogeneously embedded in and adsorbed on the walls of the capsules and foams, the nanoparticles were composed of Au(0) and Au(III) with the molar ratio of about 75/25, and the mass percent of Au elements was measured to be 19.65%. The formation of the nanostructures was attributed to the self-assembly of P2VP at the liquid/liquid interface, the simultaneous reduction of AuCl(4)(-) ions by a small amount of ethanol in the chloroform and adsorption of AuCl(4)(-) ions. After irradiated by UV-light for 1h, the average diameter of the nanoparticles was found to be 2.2 nm, and the AuCl(4)(-) ions were transformed to Au(0) completely. The catalytic performance of these composite nanostructures were evaluated by using the reduction of 4-nitrophenol (4-NP) by potassium borohydride in aqueous solutions. The catalytic activity was very high in the first cycle, decreased rapidly and slightly in the second and third cycles, respectively, due to the aggregation of some nanoparticles, and stabilized after the third cycle.  相似文献   

12.
Colloidal synthesis of metal-semiconductor hybrid nanostructures is mainly achieved in organic solution. In some applications of hybrid nanoparticles relevant in aqueous media, phase transfer of hydrophobic metal-semiconductor hybrid nanostructures is essential. In this work, we present a simple method for direct synthesis of water-soluble gold (Au) decorated Te@CdTe hybrid nanorods (NRs) at room temperature by using aqueous Te@CdTe NRs as templates, which were preformed by using CdTe nanocrystals (NCs) as precursor in the presence of hydrazine hydrate (N(2)H(4)). Our results showed that NRs were decorated with Au islands both on tips and along the surface of the NRs. The size and density of Au islands can be controlled by varying the amount of Au precursor (mixture of HAuCl(4) and thioglycolic acid (TGA)) and TGA/HAuCl(4) ratio. A possible growth mechanism for the Au decoration of Te@CdTe NRs is concluded as three steps: (1) the formation of AuTe(1.7) via the substitution reaction of Cd(2+) by Au(3+), (2) adsorption of Au-TGA complex onto the preformed AuTe(1.7) anchors and following reduction by CdTe and N(2)H(4), leading to the formation of small Au NCs, (3) Au NCs grow to bigger ones, followed by reduction of more Au precursor by N(2)H(4).  相似文献   

13.
Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability (at low temperature, ca. 4 degrees C), were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as-prepared nanoparticles revealed the formation of well-dispersed Au NPs of ca. 2 nm diameter. Moreover, the color change of the Au NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on Au NPs. All the characterization results showed that the monodisperse Au NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature. On the basis of their excellent colloidal stability, controlled self-assembly ability, and biocompatible surface, the lysozyme monolayer-stabilized Au NPs hold great promise for being used in nanoscience and biomedical applications.  相似文献   

14.
PEGylated gold nanoparticles with biotin moieties installed at the distal end of the PEG tethered chains were prepared by the autoreduction of HAuCl4 catalyzed by alpha-biotinyl-PEG-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (biotinyl-PEG/PAMA) in aqueous medium at room temperature. The size of the gold nanoparticles was controllable in a range of 6-13 nm by changing the initial Au3+/polymer ratio, while retaining their narrow size distribution. The dispersion stability of the nanoparticles in aqueous medium was extremely high even under the condition of salt concentration as high as I = 2.0. Biotinyl-PEG/PAMA-anchored gold nanoparticles underwent specific aggregation in the presence of streptavidin, revealing their promising utility as colloidal sensing systems applicable under biological condition.  相似文献   

15.
Multi-branched gold nanoparticles were synthesized in high-yield through the reduction of HAuCl(4) by using hydrazine as a reducing agent. Practically 100% of the particles have numerous branches. The high reduction capability of hydrazine is found to be crucial for the formation of these branched gold nanoparticles. Their size can be controlled from 20 to 130 nm by varying the amounts of hydrazine. The prepared nanoparticles exhibit efficient surface-enhanced Raman scattering (SERS) properties and the SERS activity of the particles depends on the aspect ratio of their branches, which are most likely related to a great increase in the localized electromagnetic field enhancement from their unique sharp surface features arising from the branches.  相似文献   

16.
Organic-metal hybrid nanowires were synthesized by cooperative self-organization of the one-dimensional stacking of tetrathiafulvalene (TTF) via charge-transfer interaction with metallic gold originating from the redox reaction between TTF and gold ions. The nanowires can be easily obtained as purple precipitates just by mixing TTF and HAuCl4 in a CH3CN solution at room temperature. The feed molar ratio of TTF to HAuCl4 was 4.4. The average diameter and length of the observed nanowires were 90 +/- 36 nm and 15 +/- 3 microm, respectively. The formation was facilitated by the arrangement of the neutral and oxidized TTF along the one direction in a mix-valence state, which was confirmed by a broad absorption that appeared in the region of 2000 nm and the composition of the nanowires of [(TTFCl(0.78))Au(0.12)].  相似文献   

17.
DNA-mediated gold nanoparticles were prepared by chemical reduction of DNA-Au(III) complex. The DNA-Au(III) was first formed by reacting DNA with HAuCl? at a pH of 5.6. The complex in solution was reacted with hydrazine reducing Au(III) to Au. The reduced Au formed nanodimensional aggregates. The particle distributions were obtained by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This method resulted in a rather uniform dispersion of Au nanoparticles of near-spherical shape and 45~80 nm in diameter. Gold nanoparticles were embedded and stabilized by DNA.  相似文献   

18.
Au nanoparticles supported on Al2O3 were prepared by deposition-precipitation of HAuCl4 with different precipitation agents NaOH and urea. The samples were investigated by means of different characterization techniques such as X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). The results show that depending on the precipitation agent, the Au particles have a different Au-Au coordination number and size after calcination at 523 K. Whereas the use of NaOH leads to the formation of Au nanoparticles with a Au-Au coordination number of 6.7 and a mean diameter below 2 nm, those prepared with urea have a mean size of 3.1 nm. The Au-Au coordination number could be determined as 8.6. At the smaller particles obtained with NaOH, hints for Au-O interactions were found. For these particles TEM results advise a rather flat lenticular morphology. Different deposition mechanisms depending on the precipitation agent are discussed as the reason for the formation of nanoparticles with different shapes, sizes, and valence states.  相似文献   

19.
以3.5 G PAMAM(3.5代聚酰胺-胺型)树状大分子为保护剂,利用微波法还原HAuCl4溶液制备金纳米粒子.考察了当3.5 G PAMAM与HAuCl4物质的量的比一定时,微波照射不同时间对金纳米粒子大小及形状的影响;以及同一照射条件下,3.5 G PAMAM与HAuCl4不同的物质的量比值对金纳米粒子大小及形状的影响.利用紫外可见分光光度计、透射电子显微镜对其进行了表征.结果表明,当3.5 G PAMAM与HAuCl4物质的量的比值一定时,金纳米粒子的形状和大小受微波照射时间长短的影响不大;适当延长照射时间,制得的金纳米粒子的分散性较好.在相同照射条件下,随着3.5 G PAMAM与HAu-Cl4物质的量比值的减小,得到的金纳米粒子粒径逐渐变大,且分散性变差.  相似文献   

20.
液晶模板法制备Au纳米线   总被引:12,自引:0,他引:12  
利用非离子表面活性剂C12E4的层状液晶作为模板,以氯金酸(HAuCl4)水溶液作为体系的水相和反应物,并利用C12E4中EO基团的还原性制备了Au的纳米线.研究表明,反应物的浓度、液晶体系的组成和反应时间都将影响产物的形貌.在适当条件下,可以得到直径约为20nm,长度达到几微米的均匀金纳米线,并探讨了纳米线形成过程中层状液晶的模板作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号