首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
S Deser 《Annals of Physics》1973,80(1):189-211
The question of cancellation of logarithmic divergence appearing in the proton-neutron mass difference is studied in gauge theories of weak and electromagnetic interactions. In particular, we study the proton-neutron mass difference in three kinds of gauge models. It is found that the contribution from weak hadronic currents in two of the models cancels the logarithmic divergence arising from purely electromagnetic interaction, but as pointed out in the text these two models suffer from some other defects. In one of the models such a cancellation is not possible although the model is otherwise attractive. In this latter case, a mass renormalization counter term exists to absorb the infinity in the mass difference leaving the mass difference essentially a free parameter.  相似文献   

2.
A dual channel probe for the simultaneous acquisition of NMR data from multiple samples has been developed. This multiplex probe consists of two noninteracting sample coils that are each capable of detecting NMR signals at the same resonant frequency with good sensitivity and resolution. 13C free induction decays for the two samples, methanol (13C, 99%) and carbon tetrachloride (13C, 99%), were acquired simultaneously at 75.44 MHz using a single transmitter pulse and separate NMR receivers. S/N measurements are comparable to those observed using single coils. No evidence of cross talk is evident in the spectra even after considerable signal averaging. The probe demonstrates the feasibility of significant parallelism in NMR, which will be of interest in situations where high throughput analysis is desired.  相似文献   

3.
We present a simple, generally applicable approach to prevent sample evaporation when working at elevated temperatures in high resolution NMR. It consists of experimentally sealing the NMR sample by a second liquid (Experimental Liquid Sealing, ELISE). For aqueous samples, we identified the mineral oil commonly used in PCR application as the best candidate, because it contains only a very limited amount of water-soluble contaminants, is stable over time and heat resistant. The procedure does not interfere with shim settings, and is compatible with a wide variety of samples, including oligosaccharides and proteins. For chloroform samples, a simple drop of water allows to efficiently seal the sample, avoiding solvent evaporation even over lengthy time periods.  相似文献   

4.
Solid-state NMR spectroscopy (SSNMR) is an extremely powerful technique for the analysis of pharmaceutical dosage forms. A major limitation of SSNMR is the number of samples that can be analyzed in a given period of time. A solid-state magic-angle spinning (MAS) probe that can simultaneously acquire up to seven SSNMR spectra is being developed to increase throughput/signal-to-noise ratios. A prototype probe incorporating two MAS modules has been developed and spectra of ibuprofen and aspirin have been acquired simultaneously. This version is limited to being a two-module probe due to large amounts of space required for the tuning elements located next to the MAS modules. A new probe design incorporating coaxial transmission lines and smaller MAS modules has been constructed. This probe allows for close proximity of the MAS modules (within 3 cm), adequate proton decoupling power (>50 kHz), and the capability of remote tuning and sample changing. Spectra of hexamethylbenzene (HMB) have been acquired and show signal-to-noise ratios comparable to existing SSNMR probes. Adamantane line widths are also comparable to conventional probe technology. Decoupling powers of 70 kHz have been achieved using a MAS module suitable for 3 cm spacing between modules. Remote tuning has also been achieved with this new coaxial transmission line design. This probe design can be easily scaled to incorporate multiple MAS modules, which is a limitation of the previous design. The number of modules that can be incorporated is only limited by the number of transmission lines that will fit in a cross-sectional diameter of the bore and the axial field length of the magnet.  相似文献   

5.
The size limit for protein NMR spectroscopy in solution arises in large part from line broadening caused by slow molecular tumbling. One way to alleviate this problem is to increase the effective tumbling rate by reducing the viscosity of the solvent. Because proteins generally require an aqueous environment to remain folded, one approach has been to encapsulate hydrated proteins in reverse micelles formed by a detergent and to dissolve the encapsulated protein in a low-viscosity fluid. The high volatility of suitable low-viscosity fluids requires that the samples be prepared and maintained under pressure. We describe a novel apparatus used for the preparation of such samples. The apparatus includes a chamber for mixing the detergent with the low-viscosity solvent, a second chamber for mixing this with hydrated protein, and a 5-mm (o.d.) zirconium oxide NMR sample tube with shut-off valves designed to contain pressures on the order of 10 bar, sufficient for liquid propane. Liquids are moved from one location to another by introducing minor pressure differentials between two pressurization vessels. We discuss the operation of this apparatus and illustrate this with data on a 30-kDa protein complex (chymotrypsin:turkey ovomucoid third domain) encapsulated in reverse micelles of the detergent, sodium bis (2-ethylhexyl) sulfosuccinate, aerosol-ot (AOT), dissolved in liquid propane.  相似文献   

6.
We report a 20-MHz proton nuclear magnetic resonance T1 relaxation study of cement paste hydration in the early stages of setting, using different centimeter-sized samples of cements of various origins and different water-to-cement ratios. In every sample, during the first few minutes of hydration, it is found that inverse Laplace processing of inversion-recovery measurements systematically exhibits at least two T1 values: a long one, around 100 ms, whose value correlates well with water content and which may be attributed to bulk water surrounding cement grains; and a short one, around 2 ms, which is quite insensitive to water-to-cement ratio and which may be attributed to water embedded in floculated cement grains before setting occurs. The time evolution of the longest T1 value for several hours is also shown to exhibit a characteristic five-stage behavior that is well correlated with known stages of the hydration process: initial reaction, induction period, acceleration period, deceleration period and slow hydration reaction. These results are compared with calorimetric measurements and electrical conductivity literature.  相似文献   

7.
The femtosecond time-resolved difference absorption spectra of all-trans-βApo-8′-carotenal have been recorded and analyzed by the singular-value decomposition (SVD) method followed by global fitting using a sequential model for the excited-state energy relaxation. With this model, we have obtained the excited-state absorption spectra and the lifetimes of the corresponding excited states both in nonpolar solvent n-hexane and polar solvent methanol. Three excited states, namely S3(170fs), S2(2.32ps) and S1(26ps) in n-hexane, and two excited states S2 (190fs) and S1(9.4ps) in methanol have been observed. The excited-state absorption spectra of all-trans-β-Apo-8′-carotenal in methanol display a red shift and broadeness, while the lifetime of S1 state becomes shorter. It is proposed that these effects are related to the presence of a carbonyl functional group that leads to the solvent effect on the excited-state energy level. At the same time, it is shown that the SVD method is a useful tool in resolving the time-resolved absorption spectra.  相似文献   

8.
Shifted‐excitation Raman difference spectroscopy (SERDS) is an experimental method to recover spontaneous Raman spectra despite the presence of strong fluorescence interference. The common scheme requires a tunable laser source and recording two spectra after each other. In this paper, an approach for instantaneous SERDS (iSERDS) is presented utilizing a broadband light source. The broadband radiation is spatially dispersed in the focal plane inside the object of investigation. The generated scattering signal is imaged onto the slit of an imaging spectrograph. The individual pixel lines on the detector represent Raman spectra with slightly shifted excitation wavelength and hence allow SERDS spectra to be derived. The proposed iSERDS technique is a suitable approach for obtaining Raman spectra from fluorescing samples provided they are homogenous on the length scale of the measurement volume. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
We show that it is feasible to use a minicoil for solid-state 19F 1H NMR experiments that has short pulse widths, good RF homogeneity, and excellent signal-to-noise for small samples while using low power amplifiers typical to liquid-state NMR. The closely spaced resonant frequencies of 1H and 19F and the ubiquitous use of fluorine in modern plastics and electronic components present two major challenges in the design of a high-sensitivity, high-field 1H/19F probe. Through the selection of specific components, circuit design, and pulse sequence, we were able to build a probe that has low 19F background and excellent separation of 1H and 19F signals. We determine the principle components of the chemical shift anisotropy tensor of 5-fluoroindole-3-acetic acid (5FIAA) and 5-fluorotryptophan. We also solve the crystal structure of 5FIAA, determine the orientation dependence of the chemical shift of a single crystal of 5FIAA, and predict the 19F chemical shift based on the orientation of the fluorine in the crystal. The results show that this 1H/19F probe is suitable for solid-state NMR experiments with low amounts of biological molecules that have been labeled with 19F.  相似文献   

10.
A new stimulated-echo based pulsed gradient spin-echo NMR diffusion sequence incorporating WATERGATE solvent suppression, PGSTE-WATERGATE, is presented. The sequence provides superb solvent suppression without any phase distortions. The sequence is simple to set up and particularly suited to measuring diffusion coefficients in aqueous solution such as is commonly required in pharmaceutical and combinatorial applications. The utility of the sequence is demonstrated on samples containing lysozyme and sucrose. Importantly, the high degree of phase-distortion suppression allows more complicated selective pi pulses to be used to enhance the selectivity of solvent suppression.  相似文献   

11.
For a group of eight subjects showing stronger than usual irregularities in the level dependence of the quadratic distortion product, the level and phase of the (f2-f1) difference tone were measured using the method of cancellation for three sets of primary frequencies as a function of the primary levels. An additional masker seems to "linearize" the level dependence toward regular behavior. Using data sets produced with and without the additional masker, it is possible to separate two sources of quadratic nonlinearity, one with regular behavior presumably located in the middle ear and another with irregular behavior (similar to that of cubic distortion) presumably located in the characteristics of outer hair cells. Through the "subtraction" of empirically determined patterns from idealized patterns, it is possible to approximate patterns stemming from the inner-ear source alone.  相似文献   

12.
采用溶胶-凝胶方法制备ZnO纳米粉体,研究了两种不同溶剂下制备的纳米ZnO的荧光特性。结果表明两种氧化锌有相同的晶型和能带结构,其紫外发光相似,但其带间的可见发射表现出了巨大差异,其原因在于两溶剂的极性不同导致两体系凝胶、烧结的微过程不同,从而使两ZnO样品的表面态结构和布局发生变化。  相似文献   

13.
不同溶胶体系对纳米氧化锌发光特性的影响   总被引:3,自引:1,他引:2  
采用溶胶-凝胶工艺制备ZnO纳米粉体,研究了两种不同溶剂下制备的纳米ZnO的荧光特性。实验结果表明两种氧化锌样品有相同的晶型和能带结构,其紫外发光相似,但其带间的可见发射表现出了巨大差异,其原因在于两溶剂的极性不同导致两体系凝胶、烧结的微过程不同,从而使两种ZnO样品的表面态结构和布局发生变化。  相似文献   

14.
We have reinvestigated a transmission line NMR probe first published by Lowe and co-workers in 1970s [Rev. Sci. Instrum. 45 (1974) 631; 48 (1977) 268] numerically and experimentally. The probe is expected to be ultra-broadband, thus might enable new types of solid-state NMR experiments. The NMR probe consists of a coil and capacitors which are connected to the coil at regular intervals. The circuit is the same as a cascaded LC low-pass filter, except there are nonzero mutual inductances between different coil sections. We evaluated the mutual inductances by Neumann's formula and calculated the electrical characteristics of the probe as a function of a carrier frequency. We found that they were almost the same as those of a cascaded LC low-pass filter, when the inductance L of a section was estimated from the inductance of the whole coil divided by the number of the sections, and if C was set to the capacitance in a section. For example, the characteristic impedance of a transmission line coil is given by Z=(L/C)(1/2). We also calculated the magnitude and the distribution of RF magnetic field inside the probe. The magnitude of RF field decreases when the carrier frequency is increased because the phase delay between neighboring sections is proportional to the carrier frequency. For cylindrical coils, the RF field is proportional to (pinu/2nu(d))(1/2)exp(-nu/nu(d)), where the decay frequency nu(d) is determined by the dimensions of the coil. The observed carrier frequency thus must be much smaller than the decay frequency. This condition restricts the size of transmission line coils. We made a cylindrical coil for a 1H NMR probe operating below 400 MHz. It had a diameter 2.3mm and a pitch 1.2mm. Five capacitors of 6pF were connected at every three turns. The RF field strength was 40 and 60 kHz at the input RF power 100 W by a calculation and by experiments, respectively. The calculations showed that the RF field inhomogeneity along the coil axis was caused by a standing wave of current, which arose from the reflections at the coil ends. The calculation showed that the homogeneity could be improved by decreasing the pitch near the both ends and making their impedance close to that at the center.  相似文献   

15.
High-sensitivity proton detected experiments in solid-state NMR have been recently demonstrated in proton diluted proteins as well as fully protonated samples under fast magic-angle spinning. One key element for performing successful proton detection is effective solvent suppression achieved by pulsed field gradients (PFG) and/or saturation pulses. Here we report a high-performance solvent suppression method that attenuates multiple solvent signals simultaneously by more than a factor of 10,000, achieved by an optimized combination of homospoil gradients and supercycled saturation pulses. This method, which we call Multiple Intense Solvent Suppression Intended for Sensitive Spectroscopic Investigation of Protonated Proteins, Instantly (MISSISSIPPI), can be applied without a PFG probe. It opens up new opportunities for two-dimensional heteronuclear correlation spectroscopy of hydrated proteins at natural abundance as well as high-sensitivity and multi-dimensional experimental investigation of protein-solvent interactions.  相似文献   

16.
17.
A theoretical treatment of double-beam Fourier spectroscopy, with two inputs and two outputs measured by a single detector, is presented. One of the novel features is the use of the radiation that returns to the source in a conventional Fourier spectrometer, i.e., the anti-interferogram beam. The double beam feature allows simultaneous measurement of the difference in the spectra of the sample and a reference standard with optical cancellation of common features. Several versions of spectrometers suited for specific applications are discussed as special cases. Applications include the ability to measure small absorptivity or reflectivity against strong and varying background, to compare the emission spectra of two nearly equal sources, or the sensitivity of two different detectors. Moreover, by suitably chopping the input or output beams, the noise due to fluctuations in source intensity may be strongly reduced.  相似文献   

18.
This paper deals with the problem of reproducing two signals at two points in space by using two acoustic sources. While much is now known about the techniques available for the design of matrices of inverse filters that enable this objective to be achieved in practice, it is still the basic physics of the sound field produced that controls the effectiveness of such systems and which ultimately dictates their design. The basic physical processes involved in producing the cross-talk cancellation that enables the reproduction of the desired signals is revisited here by using a simple two source/two field point free field model. The singular value decomposition is used to identify those frequencies where the inversion problem becomes ill-conditioned and to explain physically the origin of the ill-conditioning. As observed previously, it is found that cross-talk cancellation becomes problematic when the path length difference between the two sources and one of the field points becomes equal to one half the acoustic wavelength. The ill-conditioned frequencies are also found to be associated with a limited spatial region of cross-talk cancellation and with large source outputs manifested in the time domain by responses of long duration.  相似文献   

19.
We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here—which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole—circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths.  相似文献   

20.
The design of a simple high-temperature nuclear magnetic resonance (NMR) probe head for narrow-bore magnets is presented. It covers the temperature range from 20 to 1300°C, necessitating a heating power of below 100 W. Several probe heads of this design, manufactured for NMR solenoids with bores from 30 to 54 mm have shown good stability and long life times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号