首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Liquid chromatography with atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) was applied for the determination of butyl- and phenyltin compounds. Chromatography was performed on a 30 ׶2 mm, 3 μm C18 column, enabling the separation of mono-, di- and trisubstituted butyl- and phenyltin compounds in less than 10 min using a water/1% trifluoroacetic acid/¶methanol gradient. While satisfactory retention and resolution is achieved for the di- and trisubstituted butyl- and phenyltin compounds, monobutyltin and monophenyltin cannot be resolved chromatographically. Depending on the parameter values of the interface, APCI-MS detection allows both specific detection of the molecular ion or cluster ion at low to intermediate fragmentor voltages or quasi-element specific detection of the Sn+ ion released from the organotin compounds at high fragmentor voltages. The sensitivity of MS detection is similar for butyl- and phenyltin compounds, but varies largely from mono- to trisubstituted organotin compounds with tributyl- and triphenyltin being the most sensitively detectable compounds. Detection limits are in the 20–65 pg (abs.) range in SIM mode and in the 750–2000 pg (abs.) range in the scan mode for tributyl- and triphenyltin and for dibutyl- and diphenyltin, respectively. Monobutyl- and monophenyltin can be detected with much lower sensitivity which, together with their unfavorable chromatographic behavior, accounts for the fact that they cannot be analyzed at environmentally relevant concentrations. Although LC-APCI-MS is generally less sensitive than comparable GC methods, it is applicable to the analysis of environmental samples as demonstrated by the analysis of the PACS-2 sediment certified reference material. Although the derivatization of the ionic organotin compounds, which particularly in real samples is a potential source of error, is circumvented when LC-APCI-MS is used, the extraction step is still critical and may lead to underestimation when quantitation is not done by the method of standard addition.  相似文献   

2.
Liquid chromatography with atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) was applied for the determination of butyl- and phenyltin compounds. Chromatography was performed on a 30 x 2 mm, 3 microm C18 column, enabling the separation of mono-, di- and trisubstituted butyl- and phenyltin compounds in less than 10 min using a water/1% trifluoroacetic acid/methanol gradient. While satisfactory retention and resolution is achieved for the di- and trisubstituted butyl- and phenyltin compounds, monobutyltin and monophenyltin cannot be resolved chromatographically. Depending on the parameter values of the interface, APCI-MS detection allows both specific detection of the molecular ion or cluster ion at low to intermediate fragmentor voltages or quasi-element specific detection of the Sn+ ion released from the organotin compounds at high fragmentor voltages. The sensitivity of MS detection is similar for butyl- and phenyltin compounds, but varies largely from mono- to trisubstituted organotin compounds with tributyl- and triphenyltin being the most sensitively detectable compounds. Detection limits are in the 20-65 pg (abs.) range in SIM mode and in the 750-2000 pg (abs.) range in the scan mode for tributyl- and triphenyltin and for dibutyl- and diphenyltin, respectively. Monobutyl- and monophenyltin can be detected with much lower sensitivity which, together with their unfavorable chromatographic behavior, accounts for the fact that they cannot be analyzed at environmentally relevant concentrations. Although LC-APCI-MS is generally less sensitive than comparable GC methods, it is applicable to the analysis of environmental samples as demonstrated by the analysis of the PACS-2 sediment certified reference material. Although the derivatization of the ionic organotin compounds, which particularly in real samples is a potential source of error, is circumvented when LC-APCI-MS is used, the extraction step is still critical and may lead to underestimation when quantitation is not done by the method of standard addition.  相似文献   

3.
A comparison of sulphur-mode (393 nm) and tin-mode (610 nm) flame photometric detectors for the gas chromatographic determination of butyl- and phenyltin compounds is described. The chromatographic peaks of the butyl- and phenyltin compounds were well separated, and high sensitivity was achieved in both modes; however, the tin-mode was more specific for tin compounds than the sulphur-mode. The absolute detection limits with the sulphur-mode and the tin-mode were 3.9-7.6 pg and 2.6-5.1 pg as tin, respectively. The application of the tin-mode gas chromatographic method to the determination of organotin compounds in fish is presented. For this application, organotins are extracted (as chloride) with hydrochloric acid and n-hexane-benzene (3:2, containing 0.05% tropolone) and the extracts are pentylated by a Grignard reagent prior to gas chromatography. The absolute recoveries of butyl- and phenyltin compounds added to fish samples ranged from 68.5 to 84.4% (the coefficients of variation were less than 6.6% for all substances, n = 8). Significant amounts of three organotin compounds (di- and tributyltin and triphenyltin) in fish samples were detected by this method. This technique may have application for other organotin compounds and the monitoring of butyl- and phenyltin compounds in the environment.  相似文献   

4.
A method is described for the simultaneous determination of butyl- and phenyltin compounds in oyster samples. The organotin compounds were extracted (as chlorides) from oyster homogenates with hydrochloric acid and benzene in the presence of 0.05% tropolone. These compounds were converted into pentyl derivatives with pentyl Grignard reagent and then analysed by capillary gas chromatography with a flame photometric detector equipped with a 393-nm filter. The recoveries of six organotin compounds added to oyster samples ranged from 71 to 74%. The detection limits of butyl- and phenyltin compounds were in the 5-9 pg range as tin. We detected significant amounts of three organotin compounds (di- and tributyltin and triphenyltin) in oyster samples.  相似文献   

5.
A fast and simple procedure is presented for the simultaneous leaching of butyl (mono, di and tributyl) and phenyl organotin species from sediment samples. Leached compounds are further ethylated with sodium tetraethylborate in aqueous medium, and analyzed by gas chromatography. After testing the stability of triphenyltin under different extraction conditions, ultrasound-assisted leaching at room temperature in the presence of acetic acid was been proposed as an extraction procedure compatible with the simultaneous determination of phenyl- and butyltin compounds in sediments. Recoveries between 70 and 90% were obtained for phenyl species in spiked samples prepared in the laboratory. Results for butyltin species were validated by use of the reference material PACS-2. Quantification limits, using GC–MIP–AES as measurement technique, were approximately 5–10 ng g–1. Precision in the consecutive analysis of three sediment samples varied between 3 and 10%. Received: 16 January 2001 / Revised: 12 March 2001 / Accepted: 13 April 2001  相似文献   

6.
Abstract

Results of a comprehensive study of all analytical steps involved in the sample preparation procedure for the speciation of butyl- and phenyltin compounds in sediments are presented. The proposed method is based on acid leaching (using aqueous acetic acid) and simultaneous extraction of the ionic species into an organic solvent (n-hexane/ethyl acetate) with the addition of a complexing agent (diethyl dithiocarbamic acid). After evaporation to dryness, the residue is derivatized with sodium tetraethylborate in an aqueous buffer solution (acetate buffer, 0.1 M, pH 5) and extracted into n-hexane. Cleanup is performed over basic alumina and the ethylated organotin species are analyzed with a gas chromatograph coupled to a microwave-induced helium plasma atomic emission detector (GC-AED). The optimized method was validated within an interlaboratory study for the certification of tributyltin, triphenyltin and their degradation products in a freshwater sediment, the BCR candidate reference material 646.  相似文献   

7.
An organotin speciation method was optimized for the simultaneous determination of mono-, di- and tri-butyltin compounds and mono-, di- and tri-phenyltin compounds in water. The procedure was based on a one-step simultaneous ethylation and extraction using the sodium tetraethylborate reagent directly in the aqueous phase in the presence of an iso-octane layer. Direct extract analysis was performed using capillary gas chromatography and flame photometric detection (GC–FPD). This derivatization procedure reduces drastically the number of analytical steps, thus saving time and improving reliability. Relative detection limits range from 0.4 to 0.8 ng dm−3 for butyltin species and from 0.7 to 2.1 ng dm−3 for phenyltin species; the linearity ranges from 0 to 400 ng dm−3. Analysis of environmental aqueous samples and a Certified Reference Material (CRM) demonstrates the accuracy of the analytical method.  相似文献   

8.
Speciation of organotin in environmental sediment samples   总被引:1,自引:0,他引:1  
Ceulemans M  Slaets S  Adams F 《Talanta》1998,46(3):395-405
An optimized sample preparation procedure for organotin speciation in sediment samples has been applied to the analysis of sediments collected in the environment. The method is based on tropolone complexation of the ionic organotins, followed by extraction into a hexane-ethylacetate mixture and derivatization by NaBEt(4). The method was applied to the determination of organotin in various harbour, shipyard and dry-dock sediments in Belgium. Butyltin compounds were detected in all samples analyzed, often at high mg kg(-1) levels. A limited number of samples showed the presence of phenyltin compounds. Further, the method was adapted to the analysis of river sediments sampled from the vicinity of shipyards. Butyltin concentrations were detected at the microg kg(-1) level in the majority of samples.  相似文献   

9.
A method has been developed for species-selective analysis of organotin compounds in solid, biological samples. The procedure is based on accelerated solvent extraction (ASE) of analytes and includes extraction of the tin species with a methanol–water (90% methanol) solution of acetic acid/sodium acetate containing tropolone (0.03% w/v), their ethylation with NaBEt4, and separation and detection by GC–FPD. The analytical procedure was optimized with an unspiked sample of harbor porpoise (Phocoena phocoena) liver. Effects of ASE operational variables (extraction temperature and pressure, solvent composition, number of static extraction steps) are discussed. Method detection limits (MDL) were in the range 6–10 ng(Sn) g–1 dry weight and 7–17 ng(Sn) g–1 dry weight for butyl- and phenyltin compounds, respectively. Recoveries were comparable with or better than those obtained by use of other procedures reported in the literature. The analytical procedure was validated by analysis of NIES No. 11 (fish tissue) certified reference material.  相似文献   

10.
A liquid chromatographic method with inductively coupled plasma mass spectrometry is proposed for the speciation of butyl- (monobutyltin, dibutyltin, tributyltin) and phenyl- (monophenyltin, diphenyltin, triphenyltin) tin compounds in sediments. After evaluation of different additives in the mobile phase, the use of 0.075% (w/v) of tropolone and 0.1% (v/v) of triethylamine in a mobile phase of methanol-acetic acid-water (72.5:6:21.5) allowed the best chromatographic separation of the six compounds. Pressurized liquid extraction (PLE) with a methanolic mixture of 0.5 M acetic acid and 0.2% (w/v) of tropolone was suitable for the quantitative extraction of butyl- and phenyltin compounds with recovery values ranging from 72 to 102%. This analytical approach was compared to conventional solvent extraction methods making use of acids and/or organic solvent of medium polarity. The main advantages of PLE over conventional solvent extraction are: (i) the possibility to extract quantitatively DPhT and MPhT from sediments, which could not be done by a solvent extraction approach; (ii) to preserve the structural integrity of the organotin compounds; (iii) to reduce the extraction time from several hours in case of solvent extraction techniques to just 30 min. For spiked sediments, limits of detection ranged from 0.7 to 2 ng/g of tin according to the compound. The relative standard deviations were found to be between 8 and 15%. The developed analytical procedure was validated using a reference material and was applied to various environmental samples.  相似文献   

11.
D'Ulivo A 《Talanta》1988,35(6):499-501
The analytical response of inorganic tin and of eleven organotin compounds of the type R(n)SnX(4-)(n) (with n = 1, 2, 3 and R = methyl, ethyl, butyl and phenyl) was compared for direct hydride generation with non-dispersive atomic fluorescence detection. Most of these compounds showed behaviour resembling that of inorganic tin, with the exception of tributyltin and the phenyltin compounds. A simple pretreatment with 10(-3)M bromine and 0.033M nitric acid at 70 degrees for 60 niin prevents any risk of underestimation and the total dissolved tin in natural waters can be determined with recoveries better than 90%, with inorganic tin as calibration standard.  相似文献   

12.
A headspace solid-phase micro-extraction (HS-SPME) method was developed and optimized for gas chromatographic separation and determination of commonly found organotin compounds in human urine after potential exposure. Butyl- and phenyltin compounds were in situ derivatized to ethylated derivatives by sodium tetraethylborate (NaBEt4) directly in the urine matrix. The relevant parameters affecting the yield of the SPME procedure were examined using tetrabutyltin as internal standard. The method was optimized for direct use in the analysis of undiluted human urine samples and mono-, di- and tri-substituted butyl- and phenyltin compounds could be determined after a 15-min headspace extraction time at room temperature. The selectivity of the microwave-induced plasma atomic emission detector (MIP-AED) as an element specific detector in combination with the relatively selective sample preparation technique of HS-SPME allowed the interference-free detection of the organotin compounds in all cases. A quadrupole mass spectrometer was used in parallel experiments as a detector for the confirmation of the identity molecular structure of the eluted compounds. The performance characteristics of the developed method are given for the determination of mixtures of these compounds. Finally the proposed method was applied to the analysis of several human urine samples.  相似文献   

13.
A reliable and rapid speciation method for the simultaneous determination of butyl- and phenyltin species in sediment samples has been developed. Two extraction procedures are compared: methanolic hydrochloric acid (at four different concentrations) and ethanoic acid leaching. Derivatization is carried out by the one-step ethylation/extraction procedure using the sodium tetraethylborate reagent directly in aqueous phase in the presence of an isooctane layer. Analysis is performed by capillary gas chromatography hyphenated to flame photometric detection (GC-FPD). Detection limits range from 0.5 to 1.5 ng(Sn) g(-1)(dry weight). Analysis of environmental samples and certified reference materials demonstrate the accuracy of the analytical method.  相似文献   

14.
Optimal conditions of headspace solid-phase microextraction followed by gas chromatography coupled to pulsed flame photometric detection (SPME–GC–PFPD) have been investigated to validate the analysis of 11 organotin compounds in plant matrices including methyl-, butyl-, and phenyltin compounds. The extraction of organotin compounds from vegetal matrices has been carried out using optimized conditions of HCl-based extraction. The use of headspace SPME to preconcentrate the analytes allowed most of the detection limits to be obtained sub-0.5?ng(Sn)?g?1. The precision evaluated using RSD with six replicates ranges between 5 and 10% (except for triphenyltin: 17%). The accuracy of the method was validated on spiked or polluted vegetal samples taken from Bizerte Lagoon (Tunisia) and by comparison with classical liquid–liquid extraction (LLE). These results highlight the suitability of the selected method for organotin control in complex environmental matrices such as aquatic plants.  相似文献   

15.
There is a high interest in speciation of organotin compounds (OTCs) in biota and marine sediment samples, due to their influence in the transmission of the contamination in the trophic chain. Sample treatment is still the most "compromising" step of speciation analysis. Extraction methods are in general time-consuming due to long extraction times and several analytical steps involved. In addition, in most cases there are problems of low recovery, especially for MBT. These drawbacks, added to the high matrix effects generally present in biota samples, make the sample treatment for organotin analysis a serious challenge for environmental issues. Here we present a novel, fast and efficient two steps method for organotin speciation in mussel and oyster tissue as well as in marine sediments. The first step based on the use of ultrasonic probe extraction for species leaching allowed us to quantitatively extract these compounds in a few minutes. Matrix interferences drastically decreased by applying a clean-up step based on the use of an imprinted polymer especially designed for tributyltin (TBT). This procedure increased accuracy and precision of the GC-FPD analysis and improving the limit of detection, Besides, this new method prevents the use of standard addition calibration method, which is mandatory without the clean-up step. The optimization and validation has been performed by using three reference materials: mussel tissue CRM-477, oyster candidate T-38 and sediment PACS-2.  相似文献   

16.
A fast and simple procedure is presented for the simultaneous leaching of butyl (mono, di and tributyl) and phenyl organotin species from sediment samples. Leached compounds are further ethylated with sodium tetraethylborate in aqueous medium, and analyzed by gas chromatography. After testing the stability of triphenyltin under different extraction conditions, ultrasound-assisted leaching at room temperature in the presence of acetic acid was been proposed as an extraction procedure compatible with the simultaneous determination of phenyl- and butyltin compounds in sediments. Recoveries between 70 and 90% were obtained for phenyl species in spiked samples prepared in the laboratory. Results for butyltin species were validated by use of the reference material PACS-2. Quantification limits, using GC-MIP-AES as measurement technique, were approximately 5-10 ng g(-1). Precision in the consecutive analysis of three sediment samples varied between 3 and 10%.  相似文献   

17.
A method is described for the simultaneous determination of nanogram amounts of mono-, di- and tri-butyltin compounds in water. The procedure is based on the conversion of tin compounds to volatile species by Grignard pentylation and analysis using GC with flame photometric detection (GC FPD). The ionic compounds are extracted from diluted acidified (HBr) aqueous solutions by using a pentane-tropolone solution. The extracted organotin compounds are pentylated by a Grignard reagent and purified on a Fluorisil column before analysis by GC FPD. The detection limits are 20 ng dm?3 for butyltin compounds and 50 ng dm?3 for phenyltin compounds. Recoveries from spiking experiments in tap-water and natural seawater matrices, in which no organotin compounds were detected, were greater than 90% for most of the alkyltin compounds.  相似文献   

18.
Because of the high toxicity of organotin compounds and the current regulation about their applications, analytical method usable in routine analysis is required. A speciation procedure based on NaBEt4 ethylation and GC-PFPD analysis has shown to be suitable for the organotin determination. Unfortunately, some matrix effects were observed during the analysis of harbour sediments from Chile. These effects were identified as the alkylation of elemental sulfur and the coelution between the organotin compounds and some dialkylsulfides. The re-optimization of GC parameters and application of solid phase microextraction (SPME) were proposed to solve these analytical problems. Certified reference materials and different harbour sediment samples were analysed in order to evaluate the suitability of the methods for organotin control in complex environment samples.  相似文献   

19.
A new method for the speciation of butyltin compounds by solid phase extraction and direct injection using gas chromatography-mass spectrometry (GC/MS) is described. The compounds were complexed with sodium diethyldithiocarbamate and retained on a C60 sorbent column. The neutral chelates of butyltin compounds were eluted with ethyl acetate containing NaBPr4 as derivatising reagent. The main analytical figures of merit of the proposed method for 10 ml of sample are: linear range 0.2-35 ng/g expressed as Sn; limits of detection, 0.07, 0.09 and 0.10 ng/g as Sn for monobutyltin, dibutyltin and tributyltin, respectively. No interferences from metal ions such as Zn2+, Fe3+, Sb3t, Pb2+, Ni2+ and Mn2+ were observed in the determination of organotin compounds. The validation of method was performed out by the analysis of a standard reference sediment (CRM 462). The method was also applied to the determination of butyltin compounds in marine sediment samples.  相似文献   

20.
An analytical procedure for the determination of phenyltin compounds in environmental sample waters was studied. Chromatography of mono-, di- tri-phenyltin (MPT, DPT and TPT) was performed on a reversed-phase C18 column with the mobile phase comprising methanol/10−2 M H3PO4 (80:20 v/v) at pH 3 and UV detection at 214 nm. To enhance the sensitivity of the detection system, the post-column reaction between morin or 3-hydroxyflavone and phenyltin compounds was formed before fluorescence detection. Several parameters affecting the fluorescence intensity were studied systematically, including the optimum condition for the post-column reagent that was also compatible with the eluent. The parameters concerned in this study were the pH, the percentage of Triton X-100, the ratio of fluorigenic reagent to phenyltin compounds and the amount of methanol in the eluent. Detection limits before the preconcentration process were in the region of 1.5 ppb for TPT and 150–250 ppb for MPT and DPT, respectively. Utilizing solid-phase extraction on a C18 cartridge for sample clean-up as well as preconcentration successfully reduced the detection limit of TPT to the level of ng dm−3 and can be applied to seawater analysis. Recovery in the range 95.0–98.0% was obtained by developing the optimum elution profile in the preconcentration step. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号