首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of microwave-assisted extraction (MAE) was evaluated for the analysis of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in fish. An isotope dilution method was used for quantification via analysis of the samples by gas chromatography and mass spectrometry. MAE solvent, temperature, and time were optimized, and observed concentrations were compared. The MAE results were also compared to those of other extraction techniques (Soxhlet extraction, pressurized liquid extraction, saponification, and homogenization). Concentrations of PCBs and OCPs obtained by MAE at 120 degrees C for 10 min were comparable to those by the other techniques. The results suggest that MAE can be used for the analysis of PCBs and OCPs in fish.  相似文献   

2.
The extraction and determination of chlorinated biphenyls (CBs) in soils and solid wastes is an ongoing subject of study. This is an overview article that compares the microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) techniques. The extraction of CBs by ASE has been optimised taking into account the variation of pressure, temperature and extraction time by means of experimental design and the Simplex approach. The recoveries obtained under the optimum conditions are compared and discussed with those obtained from MAE and Soxhlet extractions.  相似文献   

3.
A procedure for the multiresidue determination of organochlorine pesticides and polychlorinated biphenyls in fish muscle samples has been developed. The method is based on the microwave-assisted extraction (MAE) of food samples from an acetonitrile-water (95 + 5, v/v) mixture followed by SPE cleanup of the extracts and analysis by GC with an electron capture detector. MAE operational parameters, such as the extraction solvent, temperature, and time, were optimized with respect to the extraction efficiency of the target compounds from food samples with 10-13% fat content. The chosen extraction technique allows reduction of the solvent consumption and extraction time when compared with methods already used. Acetonitrile is a good extraction solvent for low-fat matrixes (2-20% fat content), such as fish samples, because it does not significantly dissolve the highly polar proteins, salts, and sugars commonly found in food and gives high recoveries of a wide polarity range of analytes. For purification, SPE using LC-Florisil was shown to be sufficient for the removal of coextracted substances. Recoveries > 78% with RSD values < 15% were obtained for all compounds under the selected conditions. Method quantification limits were in the 5-10 microg/kg range. The method was applied to the analysis of samples of herring (Clupea harengus) purchased at the local fish market. The method is rapid and reliable for the determination of organochlorine analytes in fish muscle.  相似文献   

4.
A simple and rapid microwave-assisted extraction (MAE) technique has been developed for the determination of water-soluble inorganic species (cations: Na+, NH4+, K+, Ca2+ and Mg2+ and anions: F, Cl, NO3, PO43– and SO42–) in airborne particulate matter. The analytes were extracted under different treatment conditions such as microwave power and extraction time. They were quantified using ion chromatography. The observed concentrations and recovery yields obtained under different conditions were compared. The results of a comparison between this MAE and sonication using NIST SRM 1648 are also given in this paper. The optimized MAE technique gave results in good agreement with the values obtained by the sonication. For some ions, for example Mg2+ and K+, recovery was low with both techniques. The results demonstrated that the optimized MAE is fast and efficient compared with conventional ultrasonic extraction. Urban airborne particles were collected and subjected to the MAE followed by the IC analysis to determine the relative proportions of different water-soluble inorganic species. These results are briefly discussed.  相似文献   

5.
Known benefits of microwave assisted extraction (MAE) of polychlorinated biphenyls (PCB) from solid matrices could be proven by the described approach using n-heptane as solely applied extraction solvent. Heat transfer within the extraction vessels was achieved by heat transformer disks which absorb microwave energy and transform it into heat rapidly and independently of the temperature present in the sample-solvent system. Disadvantageous co-extraction of polar substances could be ruled out and thus clean-up of the samples was simplified and sufficient for subsequent GC-MS analysis. Comparison with other extraction techniques confirmed the efficiency of this method also for aged samples.  相似文献   

6.
Known benefits of microwave assisted extraction (MAE) of polychlorinated biphenyls (PCB) from solid matrices could be proven by the described approach using n-heptane as solely applied extraction solvent. Heat transfer within the extraction vessels was achieved by heat transformer disks which absorb microwave energy and transform it into heat rapidly and independently of the temperature present in the sample-solvent system. Disadvantageous co-extraction of polar substances could be ruled out and thus clean-up of the samples was simplified and sufficient for subsequent GC-MS analysis. Comparison with other extraction techniques confirmed the efficiency of this method also for aged samples.  相似文献   

7.
An alternative method for the extraction of polychlorinated biphenyls (PCBs) in ash samples, which is less time and solvent consuming than Soxhlet extraction, is presented. A study was carried out to evaluate the possibilities of microwave-assisted extraction (MAE) to determine exactly which parameters affect the efficiency of the process, since direct extrapolation of extraction conditions for PCBs in other solid matrices, failed when applied to coplanar congeners in ash samples. Influence of the organic solvent on the yield of the extraction was first evaluated using two ash samples with different percentages of carbon. Once the extraction solvent was fixed, the effects of solvent volume, extraction temperature and extraction time were investigated using an experimental design. It was found that the volume of organic solvent played a more important role in the extraction efficiency than the other factors. In the optimal conditions microwave extractions were performed at 110 degrees C. for 10 min and using 30 ml of toluene. Recoveries higher than 80% were obtained for all the highly chlorinated congeners. including coplanar species, in a spiked ash sample containing a relatively high concentration of carbon. The proposed method was also applied to the determination of PCBs in a reference material of urban dust. Recoveries were similar to those obtained for spiked ash samples.  相似文献   

8.
SPE is a commonly applied technique for preconcentration of pesticides from water samples. Microwave‐assisted extraction (MAE) technique is the extraction applied for preconcentration of different compounds from solid samples. SPE coupled with MAE is capable of preconcentrating these compounds from water samples too. This investigation was aimed at improving the efficiency of atrazine, alachlor, and α‐cypermethrin pesticide extraction from the spiked water samples applying SPE followed by MAE. In this way, MAE served for elution of pesticides from C18‐extraction disks with solvent heated by microwave energy. Various elution conditions were tested for their effects on the extraction efficiency of the SPE–MAE combined technique. Several parameters, such as elution solvent volume (mL), elution temperature (°C), and duration of elution (min), affect the extraction efficiency of the SPE–MAE coupled system and need to be optimized for the selected pesticides. In order to develop a mathematical model, 15 experiments were performed in the central composite design. The equation was then used to predict recoveries of the pesticides under specific experimental conditions. Optimization of microwave extraction was accomplished using the genetic algorithm approach. Best results were achieved using 20 mL of ethanol at 60°C. Optimal hold time was 5 min and 24 s. The SPE–MAE combination was also compared with the conventional SPE extraction technique with elution of a nonpolar or a moderately polar compound with nonpolar solvents.  相似文献   

9.
Wang W  Meng B  Lu X  Liu Y  Tao S 《Analytica chimica acta》2007,602(2):211-222
The methods of simultaneous extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) from soils using Soxhlet extraction, microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) were established, and the extraction efficiencies using the three methods were systemically compared from procedural blank, limits of detection and quantification, method recovery and reproducibility, method chromatogram and other factors. In addition, soils with different total organic carbon contents were used to test the extraction efficiencies of the three methods. The results showed that the values obtained in this study were comparable with the values reported by other studies. In some respects such as method recovery and reproducibility, there were no significant differences among the three methods for the extraction of PAHs and OCPs. In some respects such as procedural blank and limits of detection and quantification, there were significant differences among the three methods. Overall, ASE had the best extraction efficiency compared to MAE and Soxhlet extraction, and the extraction efficiencies of MAE and Soxhlet extraction were comparable to each other depending on the property such as TOC content of the studied soil. Considering other factors such as solvent consumption and extraction time, ASE and MAE are preferable to Soxhlet extraction.  相似文献   

10.
Optimisation of microwave-assisted extraction (MAE) for the extraction of polychlorinated biphenyls (PCBs) from soil samples has been accomplished using an experimental design approach. Variables studied have been: percentage of acetone (v/v) in an acetone:n-hexane mixture, solvent volume, extraction time, microwave power and pressure inside the extraction vessel. Five samples of a certified soil (CRM 481) have been extracted under the optimum conditions of the developed method and the results have been compared to those obtained by Soxhlet extraction. Good recoveries (>95%) have been obtained for all the PCBs studied. All extracts have been analysed by gas chromatography/mass spectrometry (GC/MS) and an optimum determination method for the electron impact mass spectrometric (EIMS) has also been developed.  相似文献   

11.
For several years, microwave assisted extraction (MAE) was applied to extract organic compounds such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, etc., from soils, sediments and standard reference materials. Very few authors applied this methodology for the extraction of PAHs from atmospheric particulate matter. In the present study, MAE of polycyclic aromatic hydrocarbons with hexane/acetone (1:1) from real atmospheric particulate samples was investigated and the effect of microwave energy and irradiation time studied. The yields of extracted compounds obtained by microwave irradiation were compared with those obtained using traditional Soxhlet extraction. MAE was evaluated using spiked real atmospheric particulate samples and two standard reference materials. Analytical determinations of PAHs were carried out by high performance liquid chromatography (HPLC) with ultraviolet and fluorescence detection. The best recoveries were achieved with a microwave energy of 400 W and an irradiation time of 20 min.  相似文献   

12.
Essential oil of Salvia mirzayanii cultivated in Iran was obtained by microwave assisted extraction (MAE) procedures. The essential oil was analysed by capillary gas chromatography using flame ionisation and mass spectrometric detections. The effects of different parameters, such as microwave power, temperature, time and type of solvent on the MAE of Salvia mirzayanii oil were investigated. Results of the two-level fractional factorial design (2(4-1)) based on an analysis of variance demonstrated that only the power, temperature and type of solvent were statistically significant. Optimal conditions for the extraction of essential oils were obtained by using Box-Behnken design. For optimum recovery of essential oil the variables power, temperature and solvent values were 115?W, 50°C and 14?s, respectively. Under the optimised experimental conditions, the extraction yield of microwave assisted extraction was 11.2% (w/w).  相似文献   

13.
Three commonly applied extraction techniques for persistent organic chemicals, Soxhlet extraction (SE), accelerated solvent extraction (ASE) and microwave-assisted extraction (MAE), were applied on soil and fish samples in order to evaluate their performances. For both PCBs and PBDEs, the two more recent developed techniques (ASE and MAE) were in general capable of producing comparable extraction results as the classical SE, and even higher extraction recoveries were obtained for some PCB congeners with large octanol-water partitioning coefficients (Kow). This relatively uniform extraction results from ASE and MAE indicated that elevated temperature and pressure are favorable to the efficient extraction of PCBs from the solid matrices. For PBDEs, difference between the results from MAE and ASE (or SE) suggests that the MAE extraction condition needs to be carefully optimized according to the characteristics of the matrix and analyte to avoid degradation of higher brominated BDE congeners and improve the extraction yields.  相似文献   

14.
The microwave assisted extraction (MAE) technique has been evaluated for the extraction of active pharmaceutical ingredients (API) from various solid dosage forms. Using immediate release tablets of Compound A as a model, optimization of the extraction method with regards to extraction solvent composition, extraction time and temperature was briefly discussed. Complete recovery of Compound A was achieved when samples were extracted using acetonitrile as the extraction solvent under microwave heating at a constant cell temperature of 50 degrees C for 5 min. The optimized MAE method was applied for content uniformity (single tablet extraction) and potency (multiple tablets extraction) assays of release and stability samples of two products of Compound A (5 and 25mg dose strength) stored at various conditions. To further demonstrate the applicability of MAE, the instrumental extraction conditions (50 degrees C for 5 min) were adopted for the extraction of montelukast sodium (Singulair) from various solid dosage forms using methanol-water (75:25, v/v) as the extraction solvent. The MAE procedure demonstrated an extraction efficiency of 97.4-101.9% label claim with the greatest RSD at 1.4%. The results compare favorably with 97.6-102.3% label claim with the greatest RSD at 2.9% obtained with validated mechanical extraction procedures. The system is affordable, user-friendly and simple to operate and troubleshoot. Rapid extraction process (7 min/run) along with high throughput capacity (up to 23 samples simultaneously) would lead to reduced cycle time and thus increased productivity.  相似文献   

15.
Pressurized liquid extraction (PLE) is a fully automated extraction technique for isolation of analytes from solid samples. This technique combines elevated temperature and pressure of liquid solvents during the extraction process. In this study the efficiency of a PLE system for the isolation of wide range of analytes (polychlorinated biphenyls and organic pesticides from sediments under different pressure and temperature conditions) was investigated. The temperature 100 degrees C and pressure 6.9 MPa (1000 p.s.i.; 1 p.s.i.=6894.76 Pa) were found to be the most efficient from all investigated conditions. Using these PLE parameters, the average recoveries for most of the analytes were in the range 80-105% and relative standard deviation was usually under 15%. The conditions of determination of analytes in the extracts using GC-MS were established. Some problems occurring during the analysis of real samples, such as coelution of analytes, were established. The influence of internal standard addition on the final analysis results was determined.  相似文献   

16.
This study presents a method based on the use of microwave-assisted extraction (MAE) for the quantitative analysis of 2,4,6-trichloroanisole (TCA), 2,3,4,6-tetrachloroanisole (TeCA), pentachloroanisole (PCA), 2,4,6-tribromoanisole (TBA), 2,4,6-trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol (TeCP), pentachlorophenol (PCP) and 2,4,6-tribromophenol (TBP) in cork stoppers. The influential parameters of the MAE procedure (extraction time, temperature and solvent volume) were optimised using a central composite experimental design combined with desirability functions. The optimal conditions identified were temperature 170 degrees C, solvent volume 35 mL and extraction time 90 min. MAE extracts were concentrated and derivatised prior to separation and quantification by gas chromatography with electron capture detection. To evaluate the applicability of the proposed MAE method, recovery results were compared with those obtained with the Soxhlet extraction method; the results were similar with both extraction methods. The new method was also satisfactorily applied to real cork stopper samples.  相似文献   

17.
A comparison of four extraction techniques used for the isolation of 14 explosive compounds (Method 8330-Explosives) from spiked soil samples is described. Soxhlet warm extraction (SWE), pressurized solvent extraction (PSE), microwave assisted extraction (MAE) and supercritical fluid extraction (SFE) were included. The effects of basic extraction conditions – i.e. type of extraction solvent, temperature, pressure, and extraction time – were investigated. The best extraction recovery of the monitored compounds from spiked soil was obtained using pressurized solvent extraction. Recoveries of explosives using the PSE technique were in the range from 65 to 112%. Extraction recoveries by Soxhlet warm extraction and supercritical fluid extraction reached 65–99% and 52–75%, respectively. The lowest extraction recoveries (28–65%) were obtained using microwave assisted extraction. A very low extraction recovery for tetryl was observed in all cases but the best results were achieved by pressurized solvent extraction (58%).  相似文献   

18.
The performances of Soxhlet extraction, dive-in Soxhlet extraction, microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), fluidized-bed extraction (FBE), and ultrasonic extraction (UE) for the analysis of organochlorine pesticides in animal feed have been investigated. ASE and MAE provided significantly better extraction efficiency than Soxhlet extraction. The concentrations were 126.7 and 114.8%, respectively, of the values obtained by classical Soxhlet extraction, whereas the results from FBE and dive-in Soxhlet were comparable with those from the standard Soxhlet procedure. The reproducibility of FBE was the best, with RSDs ranging from 0.3 to 3.9%. Under the investigated operation conditions UE was not efficient, with the recoveries of target compounds being about 50% less than Soxhlet. Additionally, the performances of Soxhlet, dive-in Soxhlet, MAE, ASE and FBE were validated by determination of the certified reference material BCR-115. The results from the extraction techniques were in good agreement with the certified values.  相似文献   

19.
In this study, low temperature vacuum microwave-assisted extraction, which simultaneous performed microwave-assisted extraction (MAE) in low temperature and in vacuo environment, was proposed. The influencing parameters including solid/liquid ratio, extraction temperature, extraction time, degree of vacuum and microwave power were discussed. The predominance of low temperature vacuum microwave-assisted extraction was investigated by comparing the extraction yields of vitamin C, β-carotene, aloin A and astaxanthin in different foods with that in MAE and solvent extraction, and 5.2–243% increments were obtained. On the other hand, the chemical kinetics of vitamin C and aloin A, which composed two different steps including the extraction step of analyte transferred from matrix into solvent and the decomposition step of analyte degraded in the extraction solvent, were proposed. All of the decomposition rates (K2) for the selected analyte in low temperature, in vacuo and in nitrogen atmosphere decreased significantly comparing with that in conventional MAE, which are in agreement with that obtained from experiments. Consequently, the present method was successfully applied to extract labile compound from different food samples. These results showed that low temperature and/or in vacuo environment in microwave-assisted extraction system was especially important to prevent the degradation of labile components and have good potential on the extraction of labile compound in foods, pharmaceutical and natural products.  相似文献   

20.
In this paper, microwave-assisted extraction (MAE) of oxymatrine from Sophora flavescens were studied by HPLC-photodiode array detection. Effects of several experimental parameters, such as concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature, and extraction time on the extraction efficiencies of oxymatrine were evaluated. The optimal extraction conditions were 60% ethanol, a 20:1 (v/v) ratio of liquid to material and extraction for 10 min at 50 °C under 500 W microwave irradiation. Under the optimum conditions, the yield of oxymatrine was 14.37 mg/g. The crude extract obtained could be used as either a component of some complex traditional medicines or for further isolation and purification of bioactive compounds. The results, which indicated that MAE is a very useful tool for the extraction of important phytochemicals from plant materials, should prove helpful for the full utilization of Sophora flavescens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号