首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tribenzylphosphine (PBz3) complexes of mercury(II), [Hg(PBz3)2](BF4)2, [Hg(PBz3)2(NO3)2] and [HgX(NO3)(PBz3)](X = Cl, Br, I and SCN), have been synthesised and their structures determined by single-crystal X-ray crystallography. [Hg(PBz3)2](BF4)2 contains [Hg(PBz3)2]2+ cations with linear P-Hg-P coordination, the first example of a truly two-coordinate [Hg(PR3)2]2+ complex. The mercury coordination in [Hg(PBz3)2(NO3)2] can be described as distorted tetrahedral, with a significant deviation of the P-Hg-P angle from linearity as a result of coordination of the nitrate groups. Nitrate coordination is also observed in [HgX(NO3)(PBz3)](X = Cl, Br, I), resulting in significantly non-linear P-Hg-X coordination. The thiocyanate complex is a centrosymmetric thiocyanate-bridged dimer with distorted trigonal-pyramidal mercury coordination to the P atom of PBz3, to the S and N atoms of two bridging thiocyanate groups, and to the O atom of one nitrate group. For all the nitrato complexes, secondary mercury-nitrate interactions (Hg-O 2.7-3.1 A) effectively raise the coordination number of the Hg(II) centres to six. High-resolution 31P solid-state NMR spectra of the six tribenzylphosphine mercury(II)-complexes, obtained by combining magic-angle spinning, proton dipolar decoupling and proton-phosphorus cross-polarization (CP-MAS), have been recorded. The spectra of [Hg(PBz3)2](BF4)2 and [HgX(NO3)(PBz3)](X = Cl, Br, I and SCN) exhibit a single line, due to species that contain non-magnetic isotopes of mercury, and satellite lines, due to 1J(31P-199Hg) coupling. The asymmetric unit of [Hg(PBz3)2(NO3)2] contains two molecules with four phosphorus environments, resulting in two AB spectra with 2J(31P-31P) coupling, due to species that contain non-magnetic isotopes of mercury, and satellite lines consisting of two ABX spectra, due to 1J(31P-199Hg) coupling. These spectra have been analysed to yield all of the chemical shifts and coupling constants involved. A remarkable increase in 1J(31P-199Hg) is observed from [Hg(PBz3)2](BF4)2 to [Hg(PBz3)2(NO3)2] as a consequence of the incorporation of the nitrate group into the Hg coordination sphere in the latter case. Several of the spectra also exhibit broader satellites due to the presence of scalar spin-spin coupling between 31P and the quadrupolar 201Hg nucleus. Slow-spinning methods have been used to analyze the spinning-sideband intensities of the NMR spectra, in order to obtain the 31P shielding anisotropy and asymmetry parameters Deltasigma and eta. The 199Hg and 31P NMR shielding tensors of PMe3 models of the above six compounds have been calculated using relativistic density functional theory. The 31P results are in good agreement with experiment and assist in the assignment of some of the signals.  相似文献   

2.
A library of tripodal amine ligands with two oxime donor arms and a variable coordinating or noncoordinating third arm has been synthesized, including two chiral ligands based on l-phenylalanine. Their Ni(II) complexes have been synthesized and characterized by X-ray crystallography, UV-vis absorption, circular dichroism, and FTIR spectroscopy, mass spectrometry, and room-temperature magnetic susceptibility. At least one crystal structure is reported for all but one Ni/ligand combination. All show a six-coordinate pseudo-octahedral coordination geometry around the nickel center, with the bis(oxime)amine unit coordinating in a facial mode. Three distinct structure types are observed: (1) for tetradentate ligands, six-coordinate monomers are formed, with anions and/or solvent filling out the coordination sphere; (2) for tridentate ligands, six-coordinate monomers are formed with Ni(II)(NO(3))(2), with one monodentate and one bidentate nitrate filling the remaining coordination positions; (3) for tridentate ligands, six-coordinate, bis(mu-Cl) dimers are formed with Ni(II)Cl(2), with one terminal and two bridging chlorides filling the coordination sphere. The UV-vis absorption spectra of the complexes show that the value of 10 Dq varies according to the nature of the third arm of the ligand. The trend based on the third arm follows the order alkyl/aryl < amide < carboxylate < alcohol < pyridyl < oxime.  相似文献   

3.
Substituent and isomer effects on the structural, spectroscopic, (UV-visible and ESR) and electrochemical properties of dirhodium(III,II) complexes containing four identical unsymmetrical bridging ligands are reported for seven related compounds of the type Rh(2)(L)(4)Cl where L = 2-(2-fluoroanilino)pyridinate (2-Fap), 2-(2,6-difluoroanilino)pyridinate (2,6-F(2)ap), 2-(2,4,6-trifluoroanilino)pyridinate (2,4,6-F(3)ap), or 2-(2,3,4,5,6-pentafluoroanilino)pyridinate (F(5)ap) anion. Rh(2)(2-Fap)(4)Cl exists only in a (4,0) isomeric conformation while Rh(2)(2,6-F(2)ap)(4)Cl, Rh(2)(2,4,6-F(3)ap)(4)Cl, and Rh(2)(F(5)ap)(4)Cl exist as both (4,0) and (3,1) isomers. It had earlier been demonstrated that Rh(2)(L)(4)Cl complexes can adopt different geometric conformations of the bridging ligands, but the current study provides the first example where two geometric isomers of Rh(2)(5+) complexes are obtained for one compound using the same synthetic procedure. The synthesis, structural, spectroscopic, and/or electrochemical properties of (3,1) Rh(2)(2,6-F(2)ap)(4)CN and (4,0) Rh(2)(2,4,6-F(3)ap)(4)(C triple bond C)(2)Si(CH(3))(3) are also reported and the data on these compounds is discussed in light of their parent complexes, (3,1) Rh(2)(2,6-F(2)ap)(4)Cl and (4,0) Rh(2)(2,4,6-F(3)ap)(4)Cl.  相似文献   

4.
(mu-Hydroxo or oxo)(mu-1,2-peroxo)diiron(III) complexes having a tetradentate tripodal ligand (L) containing a carboxylate sidearm [Fe2(mu-OH or mu-O)(mu-O2)(L)2]n+ were synthesized as models for peroxo-intermediates of non-heme diiron proteins and characterized by various physicochemical measurements including X-ray analysis, which provide fundamental structural and spectroscopic insights into the peroxodiiron(III) complexes.  相似文献   

5.
In this study benzyl and ethyl groups were appended to pyridine and aniline ancillary ligands in diiron(II) complexes of the type [Fe(2)(mu-O(2)CAr(R))(2)(O(2)CAr(R))(2)(L)(2)], where (-)O(2)CAr(R) is a sterically hindered terphenyl carboxylate, 2,6-di(p-tolyl)- or 2,6-di(p-fluorophenyl)benzoate (R = Tol or 4-FPh, respectively). These crystallographically characterized compounds were prepared as analogues of the diiron(II) center in the hydroxylase component of soluble methane monooxygenase (MMOH). The use of 2-benzylpyridine (2-Bnpy) yielded doubly bridged [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(2-Bnpy)(2)] (1) and [Fe(2)(mu-O(2)CAr(4)(-)(FPh))(2)(O(2)CAr(4)(-)(FPh))(2)(2-Bnpy)(2)] (4), whereas tetra-bridged [Fe(2)(mu-O(2)CAr(Tol))(4)(4-Bnpy)(2)] (3) resulted when 4-benzylpyridine (4-Bnpy) was employed. Similarly, 2-(4-chlorobenzyl)pyridine (2-(4-ClBn)py) and 2-benzylaniline (2-Bnan) were employed as N-donor ligands to prepare [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(2-(4-ClBn)py)(2)] (2) and [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(2-Bnan)(2)] (5). The placement of the substituent on the pyridine ring had no effect on the geometry of the diiron(II) compounds isolated when 2-, 3-, or 4-ethylpyridine (2-, 3-, or 4-Etpy) was introduced as the ancillary nitrogen ligand. The isolated [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(2-Etpy)] (6), [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(3-Etpy)] (7), [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(4-Etpy)] (8), and [Fe(2)(mu-O(2)CAr(4)(-FPh))(2)(O(2)CAr(4)(-)(FPh))(2)(2-Etpy)(2)] (9) complexes all contain doubly bridged metal centers. The oxygenation of compounds 1-9 was studied by GC-MS and NMR analysis of the organic fragments following decomposition of the product complexes. Hydrocarbon fragment oxidation occurred for compounds in which the substrate moiety was in close proximity to the diiron center. The extent of oxidation depended upon the exact makeup of the ligand set.  相似文献   

6.
Mononuclear palladium(II) complexes containing both pyrazole-type ligands and thiocyanate, of general formula [Pd(SCN)2(L)2] {L = pyrazole (HPz) and 1-phenyl-3-methylpyrazole (phmPz)} have been prepared and characterized by elemental analysis, i.r. and n.m.r. spectroscopy and by single crystal X-ray diffraction methods. The Pd atom in these structures lies on the crystallographic inversion center; in a square-planar coordination geometry made by two sulfur and two nitrogen atoms of the ligands, both in trans positions.  相似文献   

7.
Structural, electrochemical, ESR, and H2O2 reactivity studies are reported for [Mn(dmptacn)Cl]ClO4 (1, dmptacn = 1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane) and binuclear complexes of bis(pentadentate) ligands, generated by attaching 2-pyridylmethyl arms to each secondary nitrogen in bis(1,4,7-triazacyclononane) macrocycles and linked by ethyl (tmpdtne, [Mn2(tmpdtne)Cl2](ClO4)2.2DMF, 2), propyl (tmpdtnp, [Mn2(tmpdtnp)Cl2](ClO4)2.3H2O, 3), butyl (tmpdtnb, [Mn2(tmpdtnb)Cl2](ClO4)2.DMF.2H2O, 4), m-xylyl (tmpdtn-m-X, [Mn2(tmpdtn-m-X)-Cl2](ClO4)2, 5) and 2-propanol (tmpdtnp-OH, [Mn2(tmpdtnp-OH)Cl2](ClO4)2, 6) groups. 1 crystallizes in the orthorhombic space group P2(1)2(1)2(1) (No. 19) with a = 7.959(7) A, b = 12.30(1) A, and c = 21.72(2) A; 2, in the monoclinic space group P2(1)/c (No. 14) with a = 11.455(4) A, b = 15.037(6) A, c = 15.887(4) A, and beta = 96.48(2) degrees; 3, in the monoclinic space group P2(1)/c (No. 14) with a = 13.334(2) A, b = 19.926(2) A, c = 18.799(1) A, and beta = 104.328(8) degrees; and [Mn2(tmpdtnb)Cl2](ClO4)2.4DMF.3H2O (4'), in the monoclinic space group P2(1)/n (No. 14) with a = 13.361(3) A, b = 16.807(5) A, c = 14.339(4) A, and beta = 111.14(2) degrees. Significant distortion of the Mn(II) geometry is evident from the angle subtended by the five-membered chelate (ca. 75 degrees) and the angles spanned by trans donor atoms (< 160 degrees). The Mn geometry is intermediate between octahedral and trigonal prismatic, and for complexes 2-4, there is a systematic increase in M...M distance with the length of the alkyl chain. Cyclic and square-wave voltammetric studies indicate that 1 undergoes a 1e- oxidation from Mn(II) to Mn(III) followed by a further oxidation to MnIV at a significantly more positive potential. The binuclear Mn(II) complexes 2-5 are oxidized to the Mn(III) state in two unresolved 1e- processes [MnII2-->MnIIMnIII-->MnIII2] and then to the MnIV state [MnIII2-->MnIIIMnIV-->MnIV2]. For 2, the second oxidation process was partially resolved into two 1e- oxidation processes under the conditions of square-wave voltammetry. In the case of 6, initial oxidation to the MnIII2 state occurs in two overlapping 1e- processes as was found for 2-5, but this complex then undergoes two further clearly separated 1e- oxidation processes to the MnIIIMnIV state at +0.89 V and the MnIV2 state at +1.33 V (vs Fc/Fc+). This behavior is attributed to formation of an alkoxo-bridged complex. Complexes 1-6 were found to catalyze the disproportionation of H2O2. Addition of H2O2 to 2 generated an oxo-bridged mixed-valent MnIIIMnIV intermediate with a characteristic 16-line ESR signal.  相似文献   

8.
Four diiron dithiolate complexes with monophosphine ligands have been prepared and structurally characterized. Reactions of (μ-SCH2CH2S-μ)Fe2(CO)6 or [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)6 with tris(4-chlorophenyl)phosphine or diphenyl-2-pyridylphosphine in the presence of Me3NO·2H2O afforded diiron pentacarbonyl complexes with monophosphine ligands (μ-SCH2CH2S-μ)Fe2(CO)5[P(4-C6H4Cl)3] (1), (μ-SCH2CH2S-μ)Fe2(CO)5[Ph2P(2-C5H4N)] (2), [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[P(4-C6H4Cl)3] (3), and [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[Ph2P(2-C5H4N)] (4) in good yields. Complexes 14 were characterized by elemental analysis, 1H NMR, 31P{1H} NMR and 13C{1H} NMR spectroscopy. Furthermore, the molecular structures of 14 were confirmed by X-ray crystallography.  相似文献   

9.
The coupling of electron and proton transfers is currently under intense scrutiny. This Communication reports a new kind of proton-coupled electron transfer within a homodinuclear first-row transition-metal complex. The triply-bridged complex [Fe(III)(μ-OPh)(μ(2)-mpdp)Fe(II)(NH(2)Bn)] (1; mpdp(2-) = m-phenylenedipropionate) bearing a terminal aminobenzyl ligand can be reversibly deprotonated to the anilinate complex 2 whose core [Fe(II)(μ-OPh)(μ(2)-mpdp)Fe(III)(NHBn)] features an inversion of the iron valences. This observation is supported by a combination of UV-visible, (1)H NMR, and M?ssbauer spectroscopic studies.  相似文献   

10.
A series of cobalt(II) and nickel(II) complexes were synthesized using succinonitrile and its [1,4-13C2], [15N2]-, [2,2,3,3-2H4]- and [1,4-13C,-2,2,3,3-2H4]- isotopomers as bridging ligands. Spectroscopic studies, as well as X-ray powder diffraction profiles, were used to identify the nature of the octahedral coordination sphere of the central metal ions and to assign the vibrational spectra in full detail. The succinonitrile ligands were found to be in trans configuration in all the complexes studied and to be coordinated via the lone pairs of their nitrile nitrogens. The rule of mutual exclusion was found to be fulfilled for the succinonitrile ligands under the Ci symmetry of the complexes and the vibrations of the succinonitrile ligands were found to appear in either the infrared or the Raman spectra. All succinonitrile isotopomers exhibited blue-shifts of 43-71 cm(-1) upon coordination, while most of the other vibrations remained unchanged or underwent small shifts of only a few wavenumbers. The mass differences of the succinonitrile isotopomers were found to shift mainly the vibrations of the respective affected part of the molecules in comparison with the normal succinonitrile. The exchange of the halides, which are coordinated to the central metal ion, was also found to influence the vibrations of the associated water molecules and we could identify vibrational bands arising due to the H-bond interaction between the halides and the water molecules. Finally, we showed that all complexes under consideration have, spectroscopically, the same symmetry.  相似文献   

11.
Cobalt(II) and copper(II) complexes with three dioxime ligands cyclohexylamine-p-tolylglyoxime (L1H2), tert-butyl amine-p-tolylglioxime (L2H2) and sec-butylamine-p-tolylglyoxime (L3H2), have been prepared. The metal to ligand ratios of the complexes were found to be 1?:?2. The Cu(II) complexes of these ligands are proposed to be square planar; the Co(II) complexes are proposed to be octahedral with water molecules as axial ligands. Ligands and complexes are soluble in common solvents such as DMSO, DMF, CHCl3 and C2H5OH. The ligands have been characterized by elemental analysis, IR, UV-VIS, 1H?NMR, 13C?NMR and thermogravimetric analysis (TGA). The complexes were characterized by elemental analysis, IR, UV-VIS, magnetic susceptibility measurements, thermogravimetric analysis (TGA) and electrochemistry. Electrochemical properties of metal complexes show quasi-reversible one-electron redox processes. However, Co(L1H)2 and Cu(L1H)2 complexes show another oxidation peak in the positive region. This single irreversible oxidation peak is caused by the cyclic ring of the ligand. Data also revealed that the electron transfer rates of metal complexes with L1H2 are higher than the other complexes.  相似文献   

12.
Two types of copper(II) and nickel(II) complexes derived from benzophenone anthranoylhydrazone (L1), 2-acetonaftanone anthranoylhydrazone (L2), 4-phenylacetonaftonone anthranoylhydrazone (L3), benzophenone salicyoylhydrazone (L4), 2-acetonaftanon salicyoylhydrazone (L5), 4-phenylacetonaftanon salicyoylhydrazone (L6) and bidentate heterocyclic base [1,10-phenanthroline (phen)] with general stoichiometry [ML2] and [ML(phen)]Cl have been synthesized and characterized by elemental analysis, infrared spectra, UV-vis electronic absorption spectra and magnetic susceptibility measurements. The effect of varying pH and solvent on the absorption behavior of both ligands and complexes have been investigated. According to the IR spectra, the ligands act as monobasic bidentate and coordination takes place in the enol tautomeric form.  相似文献   

13.
New chromium(III) complexes are synthesized by classical thermal and microwave (MW)-irradiated techniques. The Schiff bases 2-acetylfuran-S-benzyldithiocarbazate (L1H), 2-acetylthiophene-S-benzyldithiocarbazate (L2H), 2-acetylpyridine-S-benzyldithiocarbazate (L3H), and 2-acetylnaphthalene-S-benzyldithiocarbazate (L4H) were prepared by condensation of -S-benzyldithiocarbazate in ethanol with the respective ketones by using MW as well as conventional methods. The chromium(III) complexes have been prepared by mixing CrCl3 · 6H2O in 1 : 1 and 1 : 2 molar ratios with monofunctional bidentate ketimines. The structure of the ligands and their transition metal complexes were confirmed by elemental analysis, melting point determinations, molecular weight determinations, infrared (IR), electronic and electron paramagnetic resonance (EPR) spectral, and X-ray powder diffraction studies. On the basis of these studies it is clear that the ligands coordinated to the metal atom in a monobasic bidentate mode by S∩N donors. Thus, an octahedral environment around the chromium(III) has been proposed. The growth inhibiting potential of the ligands and complexes has been assessed against a variety of fungal and bacterial strains.  相似文献   

14.
Mass spectral and thermal studies by TG and DTG of some iron(III) binuclear complexes of the general type Fe2(R2dtc)2(tds)X2X/ have been carried out to determine their modes of decomposition. Fragmentation patterns are given and possible mechanisms are discussed.
Zusammenfassung Massenspektrometrische und thermische Untersuchungen (TG und DTG) einiger zweikerniger Eisen(III)-Komplexe des allgemeinen Typs (R2dtc)2(tds)X2X2 wurden ausgeführt, um deren Zersetzungsmechanismus zu ermitteln. Fragmentspektren werden angegeben und mögliche Mechanismen diskutiert.

- ( ) Fe2(R2dtc)2(tds)X2X2 . .
  相似文献   

15.
Zeng  Qingdao  Sun  Jianjun  Gou  Shaohua  Zhou  Keyu  Fang  Jianglin  Chen  Hongyuan 《Transition Metal Chemistry》1998,23(4):371-373
Three dinuclear CuII perchlorate complexes of macrocyclic ligands derived from the condensation of sodium 4-X-2,6-diformylphenolate (X=Me, Cl or But) with 1,5-diamino-3-(8-methylquinolyl)azapentane were prepared by in situ transmetallation with Cu(ClO4)2 and characterized by physicochemical, spectroscopic and electrochemical methods.  相似文献   

16.
The compound Ru2Cl(C6H5CONH)4 has now been obtained in crystalline form and the crystal and molecular structure determined by X-ray met  相似文献   

17.
18.
Isoelectronic oxo-bridged diiron(III) aquo complexes of the homologous tripodal tetradentate amino acid ligands, N,N'-bis(2-pyridylmethyl)-3-aminoacetate (bpg(-)) and N,N'-bis(2-pyridylmethyl)-3-aminopropionate (bpp(-)), containing [(H(2)O)Fe(III)-(mu-O)-Fe(III)(H(2)O)](4+) cores, oligomerise, respectively, by dehydration and deprotonation, or by dehydration only, in reversible reactions. In the solid state, [Fe(2)(O)(bpp)(2)(H(2)O)(2)](ClO(4))(2) (1(ClO(4))(2)) exhibits stereochemistry identical to that of [Fe(2)(O)(bpg)(2)(H(2)O)(2)](ClO(4))(2) (2(ClO(4))(2)), with the ligand carboxylate donor oxygen atoms and the water molecules located cis to the oxo bridge and the tertiary amine group trans to it. Despite their structural similarity, 1(2+) and 2(2+) display markedly different aggregation behaviour in solution. In the absence of significant water, 1(2+) dehydrates and dimerises to give the tetranuclear complex, [Fe(4)(O)(2)(bpp)(4)](ClO(4))(4) (3(ClO(4))(4)), in which the carboxylate groups of the four bpp(-) ligands act as bridging groups between two [Fe(2)(O)(bpp)(2)](2+) units. Under similar conditions, 2(2+) dehydrates and deprotonates to form dinuclear and trinuclear oligomers, [Fe(2)(O)(OH)(bpg)(2)](ClO(4)) (4ClO(4)) and [Fe(3)(O)(2)(OH)(bpg)(3)](ClO(4)) (5(ClO(4))), related by addition of 'Fe(O)(bpg)' units. The trinuclear 5(ClO(4)), characterised crystallographically as two solvates 5(ClO(4)).3H(2)O and 5(ClO(4)).2MeOH, is based on a hexagonal [Fe(3)(O)(2)(OH)(bpg)(3)](+) unit, formally containing one hydroxo and two oxo bridges. The different aggregation behaviour of 1(ClO(4))(2) and 2(ClO(4))(2) results from the difference of one methylene group in the pendant carboxylate arms of the amino acid ligands.  相似文献   

19.
The mixed donor tetradentate (L(1)=N(2)O(2)) and pentadentate (L(2)=N(2)O(2)S) ligands have been prepared by the interaction of 1,3-diaminopropane and thiodiglycolic acid with diamine. These ligands possess two dissimilar coordination sites. Different types of complexes were obtained which have different stoichiometry depending upon the type of ligands. Their structural investigation have been based on elemental analysis, magnetic moment and spectral (ultraviolet, infrared, (1)H NMR, (13)C NMR and mass spectroscopy methods). The Ni(II) complexes show magnetic moments corresponding to two unpaired electrons except [Ni(L(1))](NO(3))(2) which is diamagnetic. Ligand field parameters of these complexes were compared. N(2)O(2)S donor ligand complexes show higher values of ligand field parameters, which are used to detect their geometries. The redox properties and stability of the complexes toward oxidation waves explored by cyclic voltammetry are related to the electron-withdrawing or releasing ability of the substituents of macrocyclic ligands moiety. The Ni(II) complexes displayed Ni(II)/Ni(I) couples irreversible waves associated with Ni(III)/Ni(II) process.  相似文献   

20.
Lai SW  Chan QK  Zhu N  Che CM 《Inorganic chemistry》2007,46(26):11003-11016
A series of cis-dicyanoosmium(II) complexes [Os(PPh3)2(CN)2(N intersectionN)] (N intersectionN = Ph2phen (2a), bpy (2b), phen (2c), Ph2bpy (2d), tBu2bpy (2e)) and [Os(DMSO)2(CN)2(N intersectionN)] (3a-3e, N intersectionN = Br2phen (3f), Clphen (3g)), were synthesized and their spectroscopic and photophysical properties were examined, and [Os(PMe3)2(CN)2(phen)] (4) with axial PMe3 ligands was similarly prepared. The molecular structures of 2a, 2c, [2c.Zn(NO3)2]infinity, 2d, 2e, 3b, 3d, 3e, and 4 were determined by X-ray crystallographic analyses. The two CN ligands are cis to each other with mean Os-C bond distance of 2.0 A. The two PR3 (R = Ph, Me) or DMSO ligands are trans to each other with P/S-Os-P/S angles of approximately 177 degrees . The UV-vis absorption spectra of 2a-2e display an intense absorption band at 268-315 nm (epsilon = approximately (1.54-4.82) x 104 M-1 cm-1) that are attributed to pi --> pi*(N intersection N) and/or pi --> pi*(PPh3) transitions. The moderately intense absorption bands with lambdamax at 387-460 nm (epsilon = approximately (2.4-11.3) x 103 M(-1) cm(-1)) are attributed to a 1MLCT transition. A weak, broad absorption at 487-600 nm (epsilon = approximately 390-1900 M(-1) cm(-1)) is assigned to a 3MLCT transition. Excitation of 2a-2e in dichloromethane at 420 nm gives an emission with peak maximum at 654-703 nm and lifetime of 0.16-0.67 micros. The emission energies, lifetimes, and quantum yields show solvatochromic responses, and plots of numax, tau, and Phi, respectively, versus ET (solvent polarity parameter) show linear correlations, indicating that the emission is sensitive to the local environment. The broad structureless solid-state emission of 2a-2e at 298 (lambdamax 622-707 nm) and 77 (lambdamax 602-675 nm) K are assigned to 3MLCT excited states. The 77 K MeOH/EtOH (1:4) glassy solutions of 2a-2e also exhibit 3MLCT emissions with lambdamax = 560-585 nm. The 1MLCT absorption and 3MLCT emission of 3a-3g occur at lambdamax = 332-390 nm and 553-644 nm, respectively. In the presence of Zn(NO3)2, both the 1MLCT absorption and 3MLCT emission of 2c in acetonitrile blue-shift from 397 to 341 nm and 651 to 531 nm, respectively. The enhancement of emission intensity (I/Io) of 2e at 531 nm reached a maximum of approximately 810 upon the addition of two equivs of Zn(NO3)2. The crystallographic and spectroscopic evidence suggests that 2c undergoes binding of Zn2+ ions via the cyano moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号