首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
New bidentate N-(2,6-di-phenyl-1-hydroxyphenyl) salicylaldimines bearing X=H and 3,5-di-t-butyl substituents on the salicylaldehyde ring, L(x)H, and their copper(II) complexes, M(Lx)2, (M=Cu(II), Co(II), Pd(II), Ni(II) and Zn(II)) have been synthesized and characterized by IR, UV/vis, 1H NMR, 13C NMR, ESR spectroscopy, magnetic susceptibility measurements, as well as their oxidation with PbO(2) and reduction (for Cu(Lx)2) with PPh(3) were investigated. ESR studies indicate that oxidation of M(Lx)2 produces ligand-centered M(II)-phenoxyl radical species. The Cu(Lx)2 complexes, unlike others M(Lx)2, are readily reduced by PPh3 via intramolecular electron transfer from ligand to copper(II) to give unstable radical intermediates which are converted to another stable secondary radical species. The analysis of ESR spectra of Cu(Lx)(2), Co(L1)(2) and generated phenoxyl radicals are presented.  相似文献   

2.
As part of our efforts to develop the transition metal chemistry of corrolazines, which are ring-contracted porphyrinoid species most closely related to corroles, the vanadium and copper complexes (TBP)(8)Cz(H)V(IV)O (1) and (TBP)(8)CzCu(III) (2) of the ligand octakis(para-tert-butylphenyl)corrolazine [(TBP)(8)Cz] have been synthesized. The coordination behavior, preferred oxidation states, and general redox properties of metallocorrolazines are of particular interest. The corrolazine ligand in 1 was shown to contain a labile proton by acid/base titration and IR spectroscopy, serving as a -2 ligand rather than as the usual -3 donor. The oxidation state of the vanadium center in 1 was shown to be +4, in agreement with the overall neutral charge for this complex. The EPR spectrum of 1 reveals a rich signal consistent with a V(IV)(O) (d(1), S = 1/2) porphyrinoid species (g(xx) = 1.989, g(yy) = 1.972, g(zz) = 1.962). The electrochemical analysis of 1 shows behavior closer to that of a porphyrazine than a corrolazine, with a positively shifted, irreversible reduction at -0.65 V (vs Ag/AgCl). Resonance Raman and IR data for 1 confirm the presence of a triply bonded terminal oxo ligand with nu(V(16)O) = 975 cm(-1) and nu(V(18)O) = 939 cm(-1). The copper complex 2 exhibits a diamagnetic (1)H NMR spectrum, indicative of a bona fide square planar copper(III) (d(8), low-spin) complex. Previously reported copper corroles have been characterized as copper(III) complexes which exhibit a paramagnetic NMR spectrum at higher temperatures, indicative of a thermally accessible triplet excited state ([(corrole(*+))Cu(II)]). The NMR spectrum for 2 shows no paramagnetic behavior in the range 300-400 K, indicating that compound 2 does not have a thermally accessible triplet excited state. These data show that the corrolazine system is better able to stabilize the high oxidation state copper center than the corresponding corroles. Electrochemical studies of 2 reveal two reversible processes at +0.93 and -0.05 V, and bulk reduction of 2 with NaBH(4) generates the copper(II) species [(TBP)(8)CzCu(II)](-) (2a), which exhibits an EPR signal typical of a copper(II) porphyrinoid species.  相似文献   

3.
The electron-transfer kinetics of the complex formed by copper(II/I) with the sexadentate macrocyclic ligand 1,4,7,10,13,16-hexathiacyclooctadecane ([18]aneS6) have been measured in acetonitrile with a series of three oxidizing agents and three reducing agents. These studies have been supplemented by determinations of the redox potential and the stability constants of the Cu(I)- and Cu(II)([18]aneS6) complexes in both acetonitrile and aqueous solution. The Marcus cross relationship has been applied to the cross-reaction rate constants for the six reactions studied to resolve the electron self-exchange rate constant for the Cu(II/I)([18]aneS6) complex. An average value of k11 = 3 x 10(3) M(-1) s(-1) was obtained at 25 degrees C, mu = 0.10 M in acetonitrile. This value is approximately 2 orders of magnitude smaller than the values reported previously for the corresponding Cu(II/I) complexes with the quadridentate and quinquedentate homoleptic homologues having all ethylene bridges, namely, 1,4,7,10-tetrathiacyclododecane ([12]aneS4) and 1,4,7,10,13-pentathiacyclopentadecane ([15]aneS5). This significant difference in reactivity is attributed to the greater rearrangement in the geometry of the inner-coordination sphere that accompanies electron transfer in the Cu(II/I)([18]aneS6) system, wherein two Cu-S bonds are ruptured upon reduction. In contrast to other Cu(II/I) complexes with macrocyclic polythiaethers that have self-exchange rate constants within the same range, no evidence for conformationally gated electron transfer was observed, even in the case of the most rapid oxidation reaction studied.  相似文献   

4.
The anionic complexes [Cu(L(1-))3](1-), L(-)=dopasemiquinone or L-dopasemiquinone, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the nuCC+nuCO stretching mode at ca. 1384 cm(-1). The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g=2.0005 and g=2.0923, and for Cu(II) with g=2.008 and g=2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease.  相似文献   

5.
Das O  Paria S  Zangrando E  Paine TK 《Inorganic chemistry》2011,50(22):11375-11383
The mononuclear copper(II) complex [Cu(H(2)L(1))(2)(H(2)O)](ClO(4))(2) (1) (where H(2)L(1) = 1,10-phenanthroline-5,6-dioxime) reacts with copper(II) perchlorate in acetonitrile at ambient conditions in the presence of triethylamine to afford a copper(II) complex, [Cu(L(3))(2)(H(2)O)](ClO(4))(2) (2a), of 1,10-phenanthroline furoxan. A similar complex [Cu(L(3))(2)Cl](ClO(4)) (2) is isolated from the reaction of H(2)L(1) with copper(II) chloride, triethylamine, and sodium perchlorate in acetonitrile. The two-electron oxidation of the vic-dioxime to furoxan is confirmed from the X-ray single crystal structure of 2. An intermediate species, showing an absorption band at 608 nm, is observed at -20 °C during the conversion of 1 to 2a. A similar blue intermediate is formed during the reaction of [Cu(HDMG)(2)] (H(2)DMG = dimethylglyoxime) with ceric ammonium nitrate, but H(2)DMG treated with ceric ammonium nitrate does not form any intermediate. This suggests the involvement of a copper(II) complex in the intermediate step. The intermediate species is also observed during the two-electron oxidation of other vic-dioximes. On the basis of the spectroscopic evidence and the nature of the final products, the intermediate is proposed to be a mononuclear copper(II) complex ligated by a vic-dioxime and a dinitrosoalkene. The dinitrosoalkene is generated upon two-electron oxidation of the dioxime. The transient blue color of the dioxime-copper(II)-dinitrosoalkene complex may be attributed to the ligand-to-ligand charge transfer transition. The intermediate species slowly decays to the corresponding two-electron oxidized form of vic-dioxime, i.e. furoxan and [Cu(CH(3)CN)(4)](ClO(4)). The formation of two isomeric furoxans derived from the reaction of an asymmetric vic-dioxime, hexane-2,3-dioxime, and copper(II) perchlorate supports the involvement of a dinitrosoalkene species in the intermediate step. In addition, the oxidation of 2,9-dimethyl-1,10-phenanthroline-5,6-dioxime (H(2)L(2)) to the corresponding furoxan and subsequent formation of a copper(I) complex [Cu(L(4))(2)](ClO(4)) (3) (where L(4) = 2,9-dimethyl-1,10-phenanthroline furoxan) are discussed.  相似文献   

6.
Stopped-flow spectrophotometric measurements identify and determine equilibrium data for thiourea (tu) complexes of copper(II) formed in aqueous solution. In excess Cu(II), the complex ion [Cu(tu)](2+) has a stability constant beta(1) = 2.3 +/- 0.1 M(-)(1) and molar absorptivity at 340 nm of epsilon(1) = (4.0 +/- 0.2) x 10(3) M(-)(1) cm(-)(1) at 25.0 degrees C, 2.48 mM HClO(4), and &mgr; = 464 mM (NaClO(4)). The fast reduction of Cu(II) by excess tu obeys the rate law -d[Cu(II)]/dt = k'[Cu(II)](2)[tu](7) with a value for the ninth-order rate constant k' = (1.60 +/- 0.18) x 10(14) M(-)(8) s(-)(1), which derives from a rate-determining step involving the bimolecular decomposition of two complexed Cu(II) species. Copper(II) catalyzes the reduction of hexachloroiridate(IV) by tu according to the rate law -d[IrCl(6)(2)(-)]/dt = (k(2,unc)[tu](2) + k(1,cat) [tu](5)[Cu(II)])[IrCl(6)(2)(-)]. Least-squares analysis yields values of k(2,unc) and k(1,cat) equaling 385 +/- 4 M(-)(2) s(-)(1) and (3.7 +/- 0.1) x 10(13) M(-)(6) s(-)(1), respectively, at &mgr; = 115 mM (NaClO(4)). The corresponding mechanism has a rate-determining step that involves the oxidation of [Cu(II)(tu)(5)](2+) by [IrCl(6)](2)(-) rather than the bimolecular reaction of two cupric-tu complexes.  相似文献   

7.
Evolutionary links between type 1 blue copper (T1 Cu), type 2 red copper (T2 Cu), and purple Cu(A) cupredoxins have been proposed, but the structural features and mechanism responsible for such links as well as for assembly of Cu(A) sites in vivo are poorly understood, even though recent evidence demonstrated that the Cu(II) oxidation state plays an important role in this process. In this study, we examined the kinetics of Cu(II) incorporation into the Cu(A) site of a biosynthetic Cu(A) model, Cu(A) azurin (Cu(A)Az) and found that both T1 Cu and T2 Cu intermediates form on the path to final Cu(A) reconstitution in a pH-dependent manner, with slower kinetics and greater accumulation of the intermediates as the pH is raised from 5.0 to 7.0. While these results are similar to those observed previously in the native Cu(A) center of nitrous oxide reductase, the faster kinetics of copper incorporation into Cu(A)Az allowed us to use lower copper equivalents to reveal a new pathway of copper incorporation, including a novel intermediate that has not been reported in cupredoxins before, with intense electronic absorption maxima at ~410 and 760 nm. We discovered that this new intermediate underwent reduction to Cu(I), and proposed that it is a Cu(II)-dithiolate species. Oxygen-dependence studies demonstrated that the T1 Cu species only formed in the presence of molecular oxygen, suggesting the T1 Cu intermediate is a one-electron oxidation product of a Cu(I) species. By studying Cu(A)Az variants where the Cys and His ligands are mutated, we have identified the T2 Cu intermediate as a capture complex with Cys116 and the T1 Cu intermediate as a complex with Cys112 and His120. These results led to a unified mechanism of copper incorporation and new insights regarding the evolutionary link between all cupredoxin sites as well as the in vivo assembly of Cu(A) centers.  相似文献   

8.
Various copper(I) and copper(II) derivatives, both "simple" ones (copper acetate, perchlorate and a complex with CH3CN) and compounds containing N,O-chelating ligands, catalyse very efficient (turnover numbers attain 2200) oxidation of saturated hydrocarbons with peroxyacetic acid (PAA) or tert-butyl hydroperoxide (TBHP) in acetonitrile solution at 60 degrees C. Alkyl hydroperoxide, alcohol and ketone are formed, the main product being an alkyl hydroperoxide in the oxidation with PAA and an alcohol for the case of TBHP. It has been proposed that the oxidation with PAA is induced via the attack of species r* [HO* or CH3C(=O)O*] on the alkane, RH. A competitive attack of r* on the solvent, CH3CN, also occurs. It has been assumed that in the case of the reaction catalysed by complex Cu(CH3CN)4BF4, copper is present mainly in the form of Cu+ cation, and the rate-limiting step of the oxidation process is the formation of r* via reaction (1): CH3C(=O)OOH + Cu+ --> CH3C(=O)O* + HO- + Cu2+ or/and CH3C(=O)OOH + Cu+ --> CH3C(=O)O- + HO* + Cu2+ with initial rate W1 = k1[PAA][Cu(CH3CN)4BF4] and k1 = 1.7 mol(-1) dm3 s(-1) at 60 degrees C. The activity of the Cu-catalyst is dramatically changed on a small modification of N,O-chelating ligands in the catalyst.  相似文献   

9.
The hydrolysis of copper(II) has been studied in experimental conditions for which polynuclear species are formed prevalently. The study has been carried out by the pH-metric technique at different temperatures and ionic strengths in NaClO(4) aqueous solution. As previously reported in literature, the most important hydrolytic species is Cu(2)(OH)(2)(2+). For copper(II) concentrations greater than 75 mmol dm(-3), also the species Cu(2)(OH)(3+) is formed in appreciable amount. The formation constants of these species have been determined, together with their dependence on ionic strength. The temperature coefficients of equilibrium constants allowed to obtain the relative formation enthalpies.  相似文献   

10.
The reduction of the title complexes is studied by cyclic voltammetry in aqueous media. It proceeds through a one-electron process generating the corresponding copper(I) amino acid complexes. The reduced copper(I) species undergo chemical reactions generating Cu(O) at the mercury electrode. The unreacted fraction of the copper(I) species is re-oxidised to the copper(II) complexes. The Cu(O) generated undergo a two-electron oxidation to Cu2+ at less cathodic potentials which get reduced to Cu(O) subsequently. pH-dependence of these complexes is also investigated.  相似文献   

11.
The role of metal ions in Alzheimer's disease etiology is unresolved. For the redox-active metal ions iron and copper, the formation of reactive oxygen species by metal amyloid complexes has been proposed to contribute to Alzheimer's disease neurodegeneration. For copper, reactive oxygen species are generated by copper redox cycling between its 1+ and 2+ oxidation states. Thus, the AβCu(I) complex is potentially a critical reactant associated with Alzheimer's disease etiology. Through competitive chelation, we have measured the affinity of the soluble copper-binding domain of the amyloid-β peptide for Cu(I). The dissociation constants are in the femtomolar range for both wild-type and histidine-to-alanine mutants. These results indicate that Cu(I) binds more tightly to monomeric amyloid-β than Cu(II) does, which leads us to propose that Cu(I) is a relevant in vivo oxidation state.  相似文献   

12.
Verma P  Weir J  Mirica L  Stack TD 《Inorganic chemistry》2011,50(20):9816-9825
An intermediate (C) that is observed in both phenol hydroxylation and catechol oxidation with the side-on peroxide species [Cu(2)O(2)(DBED)(2)](2+) (DBED = N(1),N(2)-di-tert-butylethane-1,2-diamine) is identified as a copper(II) semiquinone species ([1](+)) through independent synthesis and characterization. The reaction of the redox-active 3,5-di-tert-butylquinone ligand with [(DBED)Cu(I)(MeCN)](+) yields a copper(II) semiquinone [1](+) complex with a singlet ground state and an intense purple chromophore (ε(580) ~ 3500 M(-1) cm(-1)). All other copper(II) semiquinone complexes characterized to date are paramagnetic and weakly colored (ε(800) ~ 500 M(-1) cm(-1)). Antiferromagnetic coupling between the Cu(II) center and the semiquinone radical in [1](+) is characterized by paramagnetic (1)H NMR and SQUID magnetometry. Comparative X-ray crystal structures along with density functional theory calculations correlate the geometric structures of copper(II) semiquinone complexes with their magnetic and optical properties. The unique observable properties of [1](+) originate from an increase in the overlap of the Cu 3d and semiquinone π orbitals resulting from a large rhombic distortion in the structure with a twist of 51°, attributable to the large isotropic demands of the tert-butyl substituents of the DBED ligand. Independent characterization of [1](+) allows the spectroscopic yields of intermediate C to be quantified in this intriguing hydroxylation reaction.  相似文献   

13.
The Cu(II)- and Co(II)-binding properties of two peptides, designed on the basis of the active site sequence and structure of the blue copper protein plastocyanin, are explored. Peptide BCP-A, Ac-Trp-(Gly)(3)-Ser-Tyr-Cys-Ser-Pro-His-Gln-Gly-Ala-Gly-Met-(Gly )(3)-His-(Gly)(2)-Lys-CONH(2), conserves the Cu-binding loop of plastocyanin containing three of the four copper ligands and has a flexible (Gly)(3) linker to the second His ligand. Peptide BCP-B, Ac-Trp-(Gly)(3)-Cys-Gly-His-Gly-Val-Pro-Ser-His-Gly-Met-Gly-CONH(2), contains all four blue copper ligands, with two on either side of a beta-turn. Both peptides form 1:1 complexes with Cu(II) through His and Cys ligands. BCP-A, the ligand loop, binds to Cu(II) in a tetrahedrally distorted square plane with axial solvent ligation, while BCP-B-Cu(II) has no tetrahedral distortion in aqueous solution. In methanolic solution, distortion of the square plane is evident for both BCP-Cu(II) complexes. Tetrahedral Co(II) complexes are observed for both peptides in aqueous solution but with 4:2 peptide:Co(II) stoichiometries as estimated by ultracentrifugation. Cu(II) reduction potentials for the aqueous peptide-Cu(II) complexes were measured to be +75 +/- 30 mV vs NHE for BCP-A-Cu(II) and -10 +/- 20 mV vs NHE for BCP-B-Cu(II). The results indicate that the plastocyanin ligand loop can act as a metal-binding site with His and Cys ligands in the absence of the remainder of the folded protein but, by itself, cannot stabilize a type 1 copper site, emphasizing the role of the protein matrix in protecting the Cu binding site from solvent exposure and the Cys from oxidation.  相似文献   

14.
The kinetics of the reactions of copper(II) with ferrocene (Fc) and 1,1'-dimethylferrocene (Dmfc) have been studied at 25 degrees C in aqueous acetonitrile (AN) containing 50-97.5 vol % AN. With increasing % AN, the rate constant increases along with the driving-force for the reaction. The results are analyzed in terms of Marcus theory to estimate the Cu(II/I) electron self-exchange rate constant (k11) for the system. Over the solvent range studied, the calculated k11)changes from 1.1 x 10(-9) to 17 x 10(-9) M(-1) s(-1), with an average value of 5 x 10(-9). In addition, the structures of the trifluoromethanesulfonate salts of [Cu(AN)4]+, [Cu(OH2)2(AN)2]2+, and [Cu(AN)4]2+ are reported. It is found that the Cu-NCCH3 bond-length difference between the Cu(I) and Cu(II) oxidation states is only approximately 0.02 A.  相似文献   

15.
A tetranuclear mixed ligand copper(II) complex of a pyrazole containing Schiff base and a hydroxyhexahydropyrimidylpyrazole and copper(II) and nickel(II) complexes of the Schiff base having N-donor atoms have been investigated. A 2 equiv amount of 5-methyl-3-formylpyrazole (MPA) and 2 equiv of 1,3-diamino-2-propanol (1,3-DAP) on reaction with 1 equiv of copper(II) nitrate produce an unusual tetranuclear mixed ligand complex [Cu4(L1)2(L2)2(NO3)2] (1), where H2L1 = 1,3-bis(5-methyl-3-formylpyrazolylmethinimino)propane-2-ol and HL2 = 5-methyl-3-(5-hydroxyhexahydro-2-pyrimidyl)pyrazole. In contrast, a similar reaction with nickel(II) nitrate leads to the formation of a hygroscopic intractable material. On the other hand, the reaction involving 2 equiv of MPA and 1 equiv each of 1,3-DAP and various copper(II) salts gives rise to two types of products, viz. [Cu(T3-porphyrinogen)(H2O)]X2 (X = ClO4, NO3, BF4 (2)) (T3-porphyrinogen = 1,6,11,16-tetraza-5,10,15,20-tetrahydroxy-2,7,12,17-tetramethylporphyrinogen) and [Cu(H2L1)X]X x H2O (X = Cl (3), Br (4)). The same reaction carried out with nickel(II) salts also produces two types of compounds [Ni(H2L1)(H2O)2]X2 [X = ClO4 (5), NO3 (6), BF4 (7)] and [Ni(H2L1)X2] x H2O [X = Cl (8), Br (9)]. Among the above species 1, 3, and 5 are crystallographically characterized. In 1, all four copper atoms are in distorted square pyramidal geometry with N4O chromophore around two terminal copper atoms and N5 chromophore around two inner copper atoms. In 3, the copper atom is also in distorted square pyramidal geometry with N4Cl chromophore. The nickel atom in 5 is in a distorted octahedral geometry with N4O2 chromophore, where the metal atom is slightly pulled toward one of the axial coordinated water molecules. Variable-temperature (300 to 2 K) magnetic susceptibility measurements have been carried out for complex 1. The separations between the metal centers, viz., Cu(1)...Cu(2), Cu(2)...Cu(2)A, and Cu(2)A...Cu(1)A are 3.858, 3.89, and 3.858 A, respectively. The overall magnetic behavior is consistent with strong antiferromagnetic interactions between the spin centers. The exchange coupling constants between Cu(1)...Cu(2) and Cu(2)...Cu(2A) centers have turned out to be -305.3 and -400.7 cm(-1), respectively, resulting in a S = 1/2 ground state. The complexes are further characterized by UV-vis, IR, electron paramagnetic resonance, and electrochemical studies.  相似文献   

16.
The absolute magnitude of an "entatic" (constrained) state effect has never been quantitatively demonstrated. In the current study, we have examined the electron-transfer kinetics for five closely related copper(II/I) complexes formed with all possible diastereomers of [14]aneS(4) (1,4,8,11-tetrathiacyclotetradecane) in which both ethylene bridges have been replaced by cis- or trans-1,2-cyclohexane. The crystal structures of all five Cu(II) complexes and a representative Cu(I) complex have been established by X-ray diffraction. For each complex, the cross-reaction rate constants have been determined with six different oxidants and reductants in aqueous solution at 25 degrees C, mu = 0.10 M. The value of the electron self-exchange rate constant (k(11)) has then been calculated from each cross reaction rate constant using the Marcus cross relation. All five Cu(II/I) systems show evidence of a dual-pathway square scheme mechanism for which the two individual k(11) values have been evaluated. In combination with similar values previously determined for the parent complex, Cu(II/I)([14]aneS(4)), and corresponding complexes with the two related monocyclohexanediyl derivatives, we now have evaluated a total of 16 self-exchange rate constants which span nearly 6 orders of magnitude for these 8 closely related Cu(II/I) systems. Application of the stability constants for the formation of the corresponding 16 metastable intermediates--as previously determined by rapid-scan cyclic voltammetry--makes it possible to calculate the specific electron self-exchange rate constants representing the reaction of each of the strained intermediate species exchanging electrons with their stable redox partners--the first time that calculations of this type have been possible. All but three of these 16 specific self-exchange rate constants fall within--or very close to--the range of 10(5)-10(6) M(-1) s(-1), values which are characteristic of the most labile Cu(II/I) systems previously reported, including the blue copper proteins. The results of the current investigation provide the first unequivocal demonstration of the efficacy of the entatic state concept as applied to Cu(II/I) systems.  相似文献   

17.
The complex of copper(II) nitrate with N-methylimidazole (Nmiz) ligand has been studied as a catalyst for the oxidative coupling of 2,6-dimethylphenol by means of kinetic and spectroscopic measurements. The order of the reaction in copper is fractional and depends on the N/Cu ratio and the base/Cu ratio, indicating that there are at least two possible rate-determining steps, i.e. the formation of a dinuclear copper species and the phenol oxidation. EPR spectroscopy performed on frozen solutions with varying ligand to copper ratios shows that all Cu(II) is converted into the precursor complex at a ratio of 4 to 1, whereas in kinetic experiments, maximum activity and selectivity are reached only at a ratio of at least 30 to 1. Base is needed as a co-catalyst, and the maximum reaction rate is reached at a base to copper ratio of 1.8 to 1. The solid-state X-ray structure of the catalyst precursor complex has been determined to be [Cu(Nmiz)4(NO3)2], monoclinic, space group P21/n, a = 8.452(1) Å, b = 10.376(2)Å, c = 12.821(2)Å, β = 94.88(2) °, Z = 1, R = 0.049 for 3525 reflections. This structure consists of an axially elongated octahedral CuN4O2 chromophore, which is in agreement with frozen-solution EPR spectra. Investigations under conditions where water and dioxygen were carefully excluded, have shown that for the phenol oxidation step the presence of dioxygen is not required. However, the reaction does require a trace of water (or hydroxide) to form the reactive intermediate. A modified reaction mechanism for the oxidative coupling is presented with special attention to the first steps of the reaction and the equilibrium species present in solution. The role of dioxygen appears to be only to reoxidize the formed Cu(I) species and to regenerate base.  相似文献   

18.
Formation of copper(II) thiocyanato and cadminum(II) iodo complexes in micelles of poly(ethylene oxide) (PEO)-type nonionic surfactants with varying PEO chain lengths of 9.5 (Triton X-100), 30 (Triton X-305), and 40 (Triton X-405) has been studied by titration spectrophotometry and calorimetry at 298 K. In a given surfactant solution, all data obtained were analyzed by assuming formation of ternary complexes MX(n)Y(m)((2-n)+) (M = Cu(II),Cd(II); X = SCN(-), I(-); Y = surfactant), and the complexes thus form in aqueous phase (m = 0) or in micelles (m = 1). In the Cu(II)-SCN(-) system, spectrophotometric data obtained by varying concentrations of the surfactant can be explained well in terms of formation of Cu(NCS)(2)Y in micelles and Cu(NCS)(+) and Cu(NCS)(2) in an aqueous phase, and it turned out that formation constant of Cu(NCS)(2)Y increases with increasing PEO chain length. In the Cd(II)-I(-) system, the formation of CdI(3)Y(-) and CdI(4)Y(2-) is concluded in micelles, and that of CdI(+), CdI(3)(-), and CdI(4)(2-) in an aqueous phase. Interestingly, formation enthalpies of CdI(3)Y(-) and CdI(4)Y(2-) become significantly less negative with increasing PEO chain length. This suggests that transfer of the complexes from aqueous solution to a hydrophobic octylphenyl (OP) moiety in micelles is significantly more exothermic than that to a hydrophilic PEO one. Thermodynamic parameters of transfer of CdI(3)(-) and CdI(4)(2-) from aqueous solution to the OP and PEO moieties of micelles have been evaluated. Copyright 2000 Academic Press.  相似文献   

19.
Treatment of [Cu(pcho)2(NCMe)][BF4] 1 (pcho = 2‐(diphenylphosphino)benzaldehyde) with aqueous H2O2 in THF solvent affords [Cu2(dpb)2(THF)2(H2O)2] [BF4]2 2 (dpb = 2‐(diphenylphosphinoxide)‐benzoate) after crystallization from diethyl ether. This reaction involves oxidation of Cu(I) to Cu(II) ion, phosphine to phosphinoxide, and benzaldehyde to benzoate species. The crystal structure of 2 consists of two copper(II) atoms bridged by two carboxylate moieties of the dpb ligands. The coordination about each copper(II) atom is a distorted trigonal bipyramid.  相似文献   

20.
The copper(II) binding properties of the macrobicyclic diamide 1,9,12,18,22-pentaazatricyclo[7.6.6.1(3,7)]docosa-3,5,7(22)-triene-13,19-dione (L1) have been fully investigated by spectroscopic (IR, UV-vis, EPR, MALDI-TOF MS), X-ray diffraction, potentiometric, electrochemical, and spectroelectrochemical methods. This constrained receptor possesses a hemispherical cavity created by cross-bridging the 1 and 8 positions of trans-dioxocyclam (1,4,8,11-tetraazacyclotetradecane-5,12-dione, L2) with a 2,6-pyridyl strap. Treatment of L1 with a copper salt in methanol produces a red complex of [Cu(L1H(-1))]+ formula in which the copper atom is embedded in a 13-membered ring and coordinated by both amines as well as the pyridine and one deprotonated amide nitrogen atoms. Infrared spectroscopy provides evidence for protonation of the carbonyl oxygen atom belonging to the copper-bound amide of [Cu(L1H(-1))]+ under strongly acidic conditions. The resulting conversion of the amidate into an iminol group highlights the inert character of the corresponding complexes, which do not dissociate at low pH values. In contrast, both secondary amides of L1 deprotonate in the presence of a weak base, thus affording a blue pentacoordinated [Cu(L1H(-2))] compound where the copper atom sits in the center of the 14-membered dioxocyclam fragment. In aqueous solution, both complexes undergo a pH-driven (pK(a) = 8.73(2)) molecular reorganization, which is reminiscent of a glider motion. The copper(II) cation switches rapidly and reversibly from a four-coordinate flattened tetrahedral arrangement of the donor atoms in the red species to a five-coordinate environment in the blue species, which is intermediate between a square pyramid and a trigonal bipyramid. Conversion of the red to the blue form was also demonstrated to occur upon reduction of [Cu(L1H(-1))]+ by cyclic voltammetry (E(pc) = -0.64 V/SCE in CH(3)CN).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号