首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

2.
The title compound, catena‐poly[[[diaqua(methanol‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] [[aqua(aqua/methanol‐κO)(perchlorato‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] tris(perchlorate) methanol monosolvate 1.419‐hydrate], {[Cu(C9H9N5)(CH3OH)(H2O)2][Cu(C9H9N5)(ClO4)(CH3OH)0.581(H2O)1.419](ClO4)3·CH3OH·1.419H2O}n, is a one‐dimensional straight‐chain polymer of N‐(4‐methylpyrimidin‐2‐yl)pyrazin‐2‐amine (L) with Cu(ClO4)2. The complex consists of two crystallographically independent one‐dimensional chains in which the CuII atoms exhibit two different octahedral coordination geometries. The L ligand coordinates to two CuII centres in a tridentate manner, with the pyrazine ring acting as a bridge linking the CuII coordination units and building an infinite one‐dimensional chain. Extensive hydrogen bonding among perchlorate anions, water molecules and L ligands results in three‐dimensional networks.  相似文献   

3.
A new cadmium–thiocyanate complex, namely catena‐poly[1‐carboxymethyl‐4‐(dimethylamino)pyridinium [cadmium(II)‐tri‐μ‐thiocyanato‐κ4N:S2S:N] [[[4‐(dimethylamino)pyridinium‐1‐acetate‐κ2O,O′]cadmium(II)]‐di‐μ‐thiocyanato‐κ2N:S2S:N]], {(C9H13N2O2)[Cd(NCS)3][Cd(NCS)2(C9H12N2O2)]}n, was synthesized by the reaction of 4‐(dimethylamino)pyridinium‐1‐acetate, cadmium nitrate tetrahydrate and potassium thiocyanide in aqueous solution. In the crystal structure, two types of CdII atoms are observed in distorted octahedral coordination environments. One type of CdII atom is coordinated by two O atoms from the carboxylate group of the 4‐(dimethylamino)pyridinium‐1‐acetate ligand and by two N atoms and two S atoms from four different thiocyanate ligands, while the second type of CdII atom is coordinated by three N atoms and three S atoms from six different thiocyanate ligands. Neighbouring CdII atoms are linked by thiocyanate bridges to form a one‐dimensional zigzag chain and a one‐dimensional coordination polymer. Hydrogen‐bond interactions are involved in the formation of the supramolecular network.  相似文献   

4.
Subtle modifications of N‐donor ligands can result in complexes with very different compositions and architectures. In the complex catena‐poly[[bis{1‐[(1H‐benzotriazol‐1‐yl)methyl]‐1H‐imidazole‐κN 3}copper(II)]‐μ‐benzene‐1,3‐dicarboxylato‐κ3O 1,O 1′:O 3], {[Cu(C8H4O4)(C10H9N5)2(H2O)]·2H2O}n , each CuII ion is six‐coordinated by two N atoms from two crystallographically independent 1‐[(1H‐benzotriazol‐1‐yl)methyl]‐1H‐imidazole (bmi) ligands, by three O atoms from two symmetry‐related benzene‐1,3‐dicarboxylate (bdic2−) ligands and by one water molecule, leading to a distorted CuN2O4 octahedral coordination environment. The CuII ions are connected by bridging bdic2− anions to generate a one‐dimensional chain. The bmi ligands coordinate to the CuII ions in monodentate modes and are pendant on opposite sides of the main chain. In the crystal, the chains are linked by O—H…O and O—H…N hydrogen bonds, as well as by π–π interactions, into a three‐dimensional network. A thermogravimetric analysis was carried out and the fluorescence behaviour of the complex was also investigated.  相似文献   

5.
In the title compound, catena‐poly[bis[(2,2′‐bipyridine‐κ2N,N′)(1,1,3,3‐tetracyano‐2‐ethoxypropenido‐κN)copper(II)]‐μ4‐hexanedioato‐κ6O1,O1′:O1:O6,O6′:O6], [Cu2(C9H5N4O)2(C6H8O4)(C10H8N2)2]n, the adipate (hexanedioate) dianion lies across a centre of inversion in the space group P. The CuII centre adopts a distorted form of axially elongated (4+2) coordination, and the CuII and adipate components form a one‐dimensional coordination polymer from which the 2,2′‐bipyridine and 1,1,3,3‐tetracyano‐2‐ethoxypropenide components are pendent, and where each adipate dianion is bonded to four different CuII centres. The coordination polymer chains are linked into a three‐dimensional framework structure by a combination of C—H...N and C—H...O hydrogen bonds, augmented by a π–π stacking interaction.  相似文献   

6.
Three novel coordination polymers (CPs), namely poly[[di‐μ‐aqua‐bis{μ4‐3,3′‐[(5‐carboxylato‐1,3‐phenylene)bis(oxy)]dibenzoato‐κ5O1:O1′,O3:O5:O5′}bis(1,10‐phenanthroline‐κ2N,N′)trinickel(II)] dimethylformamide 1.5‐solvate trihydrate], {[Ni3(C21H11O8)2(C12H8N2)2(H2O)2]·1.5C3H7NO·3H2O}n, (I), poly[[di‐μ‐aqua‐bis{μ4‐3,3′‐[(5‐carboxylato‐1,3‐phenylene)bis(oxy)]dibenzoato‐κ5O1:O1′,O3:O5:O5′}bis(1,10‐phenanthroline‐κ2N,N′)tricobalt(II)] diethylamine disolvate tetrahydrate], {[Co3(C21H11O8)2(C12H8N2)2(H2O)2]·2C2H7N·4H2O}n, (II), and catena‐poly[[aqua(1,10‐phenanthroline‐κ2N,N′)zinc(II)]‐μ‐5‐(3‐carboxyphenoxy)‐3,3′‐oxydibenzoato‐κ2O1:O3], [Zn(C21H12O8)(C12H8N2)(H2O)]n, (III), have been synthesized by the reaction of different metal ions (Ni2+, Co2+ and Zn2+), 3,3′‐[(5‐carboxy‐1,3‐phenylbis(oxy)]dibenzoic acid (H3cpboda) and 1,10‐phenanthroline (phen) under solvothermal conditions. All the CPs were characterized by elemental analysis, single‐crystal and powder X‐ray diffraction, FT–IR spectroscopy and thermogravimetric analysis. Complexes (I) and (II) have isomorphous structures, featuring similar linear trinuclear structural units, in which the central NiII/CoII atom is located on an inversion centre with a slightly distorted octahedral [NiO6]/[CoO6] geometry. This comprises four carboxylate O‐atom donors from two cpboda3? ligands and two O‐atom donors from bridging water molecules. The terminal NiII/CoII groups are each connected to the central NiII/CoII cation through two μ1,3‐carboxylate groups from two cpboda3? ligands and one water bridge, giving rise to linear trinuclear [M32‐H2O)2(RCOO)4] (M = Ni2+/Co2+) secondary building units (SBUs) and the SBUs develop two‐dimensional‐networks parallel to the (100) plane via cpboda3? ligands with new (32·4)2(32·83·9)2(34·42.82·94·103) topological structures. Zinc complex (III) displays one‐dimensional coordination chains and the five‐coordinated Zn atom forms a distorted square‐pyramidal [ZnO3N2] geometry, which is completed by two carboxylate O‐atom donors from two distinct Hcpboda2? ligands, one O atom from H2O and two N atoms from a chelating phen ligand. Magnetically, CP (I) shows weak ferromagnetic interactions involving the carboxylate groups, and bridging water molecules between the nickel(II) ions, and CP (II) shows antiferromagnetic interactions between the Co2+ ions. The solid‐state luminescence properties of CP (III) were examined at ambient temperature and the luminescence sensing of Cr2O72?/CrO42? anions in aqueous solution for (III) has also been investigated.  相似文献   

7.
Three isotypic rare earth complexes, catena‐poly[[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐bis(μ‐but‐2‐enoato)‐κ3O,O′:O3O:O,O′‐[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐μ‐4,4′‐(ethane‐1,2‐diyl)dipyridine‐κ2N:N′], [Y2(C4H5O2)6(C12H12N2)(H2O)2], the gadolinium(III) analogue, [Gd2(C4H5O2)6(C12H12N2)(H2O)2], and the gadolinium(III) analogue with a 4,4′‐(ethene‐1,2‐diyl)dipyridine bridging ligand, [Gd2(C4H5O2)6(C12H10N2)(H2O)2], are one‐dimensional coordination polymers made up of centrosymmetric dinuclear [M(but‐2‐enoato)3(H2O)]2 units (M = rare earth), further bridged by centrosymmetric 4,4′‐(ethane‐1,2‐diyl)dipyridine or 4,4′‐(ethene‐1,2‐diyl)dipyridine spacers into sets of chains parallel to the [20] direction. There are intra‐chain and inter‐chain hydrogen bonds in the structures, the former providing cohesion of the linear arrays and the latter promoting the formation of broad planes parallel to (010).  相似文献   

8.
In the title coordination polymer, catena‐poly[[dichloridomanganese(II)]‐μ‐1,1‐diphenyl‐3,3′‐[(1R,2R)‐cyclohexane‐1,2‐diylbis(azaniumylylidene)]dibut‐1‐en‐1‐olate‐κ2O:O′], [MnCl2(C26H30N2)]n, synthesized by the reaction of the chiral Schiff base ligand 1,1‐diphenyl‐3,3′‐[(1R,2R)‐cyclohexane‐1,2‐diylbis(azanediyl)]dibut‐2‐en‐1‐one (L) with MnCl2·4H2O, the asymmetric unit contains one crystallographically unique MnII ion, one unique spacer ligand, L, and two chloride ions. Each MnII ion is four‐coordinated in a distorted tetrahedral coordination environment by two O atoms from two L ligands and by two chloride ligands. The MnII ions are bridged by L ligands to form a one‐dimensional chain structure along the a axis. The chloride ligands are monodentate (terminal). The ligand is in the zwitterionic enol form and displays intramolecular ionic N+—H...O hydrogen bonding and π–π interactions between pairs of phenyl rings which strengthen the chains.  相似文献   

9.
Assemblies of pyrazine‐2,3‐dicarboxylic acid and CdII in the presence of bis(1,2,4‐triazol‐1‐yl)butane or bis(1,2,4‐triazol‐1‐yl)ethane under ambient conditions yielded two new coordination polymers, namely poly[[tetraaqua[μ2‐1,4‐bis(1,2,4‐triazol‐1‐yl)butane‐κ2N4:N4′]bis(μ2‐pyrazine‐2,3‐dicarboxylato‐κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[diaqua[μ2‐1,2‐bis(1,2,4‐triazol‐1‐yl)ethane‐κ2N4:N4′]bis(μ3‐pyrazine‐2,3‐dicarboxylato‐κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an interesting two‐dimensional wave‐like structure and forms a distinct extended three‐dimensional supramolecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three‐dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.  相似文献   

10.
With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal–organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3‐nitrobenzoic acid (HNBA) and 4,4′‐bipyridine (4,4′‐bipy) under hydrothermal conditions produced a two‐dimensional zinc(II) supramolecular architecture, catena‐poly[[bis(3‐nitrobenzoato‐κ2O,O′)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4′‐bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction analysis. The ZnII ions are connected by the 4,4′‐bipy ligands to form a one‐dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π–π stacking interactions, expanding the structure into a threefold interpenetrated two‐dimensional supramolecular architecture. The solid‐state fluorescence analysis indicates a slight blue shift compared with pure 4,4′‐bipyridine and HNBA.  相似文献   

11.
Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4‐biphenyl‐3,4′,5‐tricarboxylato‐κ4O3:O3′:O4′:O5)tris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuI ion. The CuII centre is pentacoordinated by three O atoms from three bpt3− ligands, one N atom from a 1,4‐bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuI atom exhibits a T‐shaped geometry (CuN2O) coordinated by one O atom from a bpt3− ligand and two N atoms from two 1,4‐bib ligands. The CuII atoms are extended by bpt3− and 1,4‐bib linkers to generate a two‐dimensional network, while the CuI atoms are linked by 1,4‐bib ligands, forming one‐dimensional chains along the [20] direction. In addition, the completely deprotonated μ4‐η1111 bpt3− ligands bridge one CuI and three CuII cations along the a (or [100]) direction to form a three‐dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topology via a 2,2,3,4,4‐connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.  相似文献   

12.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

13.
π‐Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4′‐Phenyl‐2,2′:6′,2′′‐terpyridine (PTP) is an important N‐heterocyclic ligand involving π‐conjugated systems, however, studies concerning the third‐order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine CoII complex, bis(μ‐4,4′‐oxydibenzoato)‐κ3O,O′:O′′;κ3O′′:O,O′‐bis[(4′‐phenyl‐2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each CoII cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry‐related monodentate 4,4′‐oxydibenzoate (ODA2−) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)]2+ units are bridged by ODA2− ligands to form a ring‐like structure. The third‐order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z‐scan technique. The title compound shows a strong third‐order NLO saturable absorption (SA), while PTP exhibits a third‐order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is −37.3 × 10−7 m W−1, which is larger than that (8.96 × 10−7 m W−1) of PTP. The third‐order NLO susceptibility χ(3) values are calculated as 6.01 × 10−8 e.s.u. for (1) and 1.44 × 10−8 e.s.u. for PTP.  相似文献   

14.
The design and synthesis of polymeric coordination compounds of 3d transition metals are of great interest in the search for functional materials. The coordination chemistry of the copper(II) ion is of interest currently due to potential applications in the areas of molecular biology and magnetochemistry. A novel coordination polymer of CuII with bridging N,N′‐bis(2‐hydroxyphenyl)‐2,2‐dimethylpropane‐1,3‐diamine (H2L‐DM) and dicyanamide (dca) ligands, catena‐poly[[[μ2‐2,2‐dimethyl‐N,N′‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine‐1:2κ6O,N,N′,O′:O,O′]dicopper(II)]‐di‐μ‐dicyanamido‐1:2′κ2N1:N5;2:1′κ2N1:N5], [Cu2(C19H20N2O2)(C2N3)2]n, has been synthesized and characterized by CHN elemental analysis, IR spectroscopy, thermal analysis and X‐ray single‐crystal diffraction analysis. Structural studies show that the CuII centres in the dimeric asymmetric unit adopt distorted square‐pyramidal geometries, as confirmed by the Addison parameter (τ) values. The chelating characteristics of the L‐DM2− ligand results in the formation of a CuII dimer with a double phenolate bridge in the asymmetric unit. In the crystal, the dimeric units are further linked to adjacent dimeric units through μ1,5‐dca bridges to produce one‐dimensional polymeric chains.  相似文献   

15.
Two cadmium halide complexes, catena‐poly[[chloridocadmium(II)]‐di‐μ‐chlorido‐[chloridocadmium(II)]‐bis[μ2‐4‐(dimethylamino)pyridin‐1‐ium‐1‐acetate]‐κ3O:O,O′;κ3O,O′:O], [CdCl2(C9H12N2O2)]n, (I), and catena‐poly[1‐cyanomethyl‐1,4‐diazoniabicyclo[2.2.2]octane [[dichloridocadmium(II)]‐μ‐oxalato‐κ4O1,O2:O1′,O2′] monohydrate], {(C8H15N3)[CdCl2(C2O4)]·H2O}n, (II), were synthesized in aqueous solution. In (I), the CdII cation is octahedrally coordinated by three O atoms from two carboxylate groups and by one terminal and two bridging chloride ligands. Neighbouring CdII cations are linked together by chloride anions and bridging O atoms to form a one‐dimensional zigzag chain. Hydrogen‐bond interactions are involved in the formation of the two‐dimensional network. In (II), each CdII cation is octahedrally coordinated by four O atoms from two oxalic acid ligands and two terminal Cl ligands. Neighbouring CdII cations are linked together by oxalate groups to form a one‐dimensional anionic chain, and the water molecules and organic cations are connected to this one‐dimensional zigzag chain through hydrogen‐bond interactions.  相似文献   

16.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

17.
Coordination polymers (CPs) have been widely studied because of their diverse and adjustable topologies and wide‐ranging applications in luminescence, chemical sensors, magnetism, photocatalysis, gas adsorption and separation. In the present work, two coordination polymers, namely poly[(μ5‐benzene‐1,3,5‐tricarboxylato‐κ6O1:O1′:O3:O3:O5,O5′){μ3‐1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene‐κ3N:N′:N′′}di‐μ3‐hydroxido‐dicobalt(II)], [Co2(C9H3O6)(OH)(C12H12N6)]n or [Co2(btc)(OH)(mtrb)]n, (1), and poly[[diaquabis(μ3‐benzene‐1,3,5‐tricarboxylato‐κ3O1:O3:O5)bis{μ3‐1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene‐κ3N:N′:N′′}tetra‐μ3‐hydroxido‐tetracopper(II)] monohydrate], {[Cu4(C9H3O6)2(OH)2(C12H12N6)2(H2O)2]·H2O}n or {[Cu4(btc)2(OH)2(mtrb)2(H2O)2]·H2O}n, (2), were synthesized by the hydrothermal method using 1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene (mtrb) and benzene‐1,3,5‐tricarboxylate (btc3?). CP (1) exhibits a (3,8)‐coordinated three‐dimensional (3D) network of the 3,8T38 topological type, with a point symbol of {4,5,6}2{42·56·616·72·82}, based on the tetranuclear hydroxide cobalt(II) cluster [Co43‐OH)2]. CP (2) shows a (3,8)‐coordinated tfz‐d topology, with a point symbol of {43}2{46·618·84}, based on the tetranuclear hydroxide copper(II) cluster [Cu43‐OH)2]. The different (3,8)‐coordinated 3D networks based on tetranuclear hydroxide–metal clusters of (1) and (2) are controlled by the different central metal ions [CoII for (1) and CuII for (2)]. The thermal stabilities and solid‐state optical diffuse‐reflection spectra were measured. The energy band gaps (Eg) obtained for (1) and (2) were 2.72 and 2.29 eV, respectively. CPs (1) and (2) exhibit good photocatalytic degradation of the organic dyes methylene blue (MB) and rhodamine B (RhB) under visible‐light irradiation.  相似文献   

18.
Thiosemicarbazides and their metal complexes have attracted considerable interest because of their biological activities and their flexibility, which allows the ligands to bend and rotate freely to accommodate the coordination geometries of various metal centres. Discrete copper(II) and cadmium(II) complexes have been prepared by crystallization of N‐[2‐(2‐hydroxybenzoyl)hydrazinecarbonothioyl]propanamide (H3L) with Cu(CH3COO)2 or Cd(NO3)2 in a dimethylformamide/methanol mixed‐solvent system at room temperature, affording the complexes di‐μ‐acetato‐bis{μ4‐1‐[(2‐oxidophenyl)carbonyl]‐2‐(propanamidomethanethioyl)hydrazine‐1,2‐diido}tetracopper(II) dimethylformamide disolvate, [Cu4(C11H10N3O3S)2(C2H3O2)2]·2C3H7NO, (I), and bis{μ2‐[(2‐hydroxyphenyl)formamido](propanamidomethanethioyl)azanido}bis[(4,4′‐bipyridine)nitratocadmium(II)] dihydrate, [Cd2(C11H12N3O3S)2(NO3)2(C10H8N2)2]·2H2O, (II). Complex (I) consists of four CuII cations, two μ4‐bridging trianionic ligands and two μ2‐bridging acetate ligands, while complex (II) is composed of two CdII cations, two μ2‐bridging monoanionic ligands, two nitrate ligands and two 4,4′‐bipyridine ligands. These discrete complexes are connected by hydrogen bonds and van der Waals interactions to form a three‐dimensional supramolecular architecture. Compared with (I), the phenolic hydroxy group and hydrazide N atom of the thiosemicarbazide ligand of (II) are not involved in coordination and lead to a binuclear CdII complex. This different coordination mode may be attributed to the larger ionic radius of the CdII ion compared with the CuII ion.  相似文献   

19.
In catena‐poly[[dichloridocobalt(II)]‐μ‐(1,1′‐dimethyl‐4,4′‐bipyrazole‐κ2N2:N2′)], [CoCl2(C8H10N4)]n, (1), two independent bipyrazole ligands (Me2bpz) are situated across centres of inversion and in tetraaquabis(1,1′‐dimethyl‐4,4′‐bipyrazole‐κN2)cobalt(II) dichloride–1,1′‐dimethyl‐4,4′‐bipyrazole–water (1/2/2), [Co(C8H10N4)2(H2O)4]Cl2·2C8H10N4·2H2O, (2), the Co2+ cation lies on an inversion centre and two noncoordinated Me2bpz molecules are also situated across centres of inversion. The compounds are the first complexes involving N,N′‐disubstituted 4,4′‐bipyrazole tectons. They reveal a relatively poor coordination ability of the ligand, resulting in a Co–pyrazole coordination ratio of only 1:2. Compound (1) adopts a zigzag chain structure with bitopic Me2bpz links between tetrahedral CoII ions. Interchain interactions occur by means of very weak C—H...Cl hydrogen bonding. Complex (2) comprises discrete octahedral trans‐[Co(Me2bpz)2(H2O)4]2+ cations formed by monodentate Me2bpz ligands. Two equivalents of additional noncoordinated Me2bpz tectons are important as `second‐sphere ligands' connecting the cations by means of relatively strong O—H...N hydrogen bonding with generation of doubly interpenetrated pcu (α‐Po) frameworks. Noncoordinated chloride anions and solvent water molecules afford hydrogen‐bonded [(Cl)2(H2O)2] rhombs, which establish topological links between the above frameworks, producing a rare eight‐coordinated uninodal net of {424.5.63} ( ilc ) topology.  相似文献   

20.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号