首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A method for the determination of 22 phthalate esters in polystyrene food‐contact materials has been established using ultraperformance convergence chromatography with tandem mass spectrometry. In this method, 22 phthalate esters were analyzed in <3.5 min on an ACQUITY Tours 1‐AA column by gradient elution. The mobile phase, the compensation solvent, the flow rate of mobile phase, column temperature, and automatic back pressure regulator pressure were optimized, respectively. There was a good linearity of 20 phthalate esters with a range of 0.05–10 mg/L, diisodecyl phthalate and diisononyl phthalate were 0.25–10 mg/L, and the correlation coefficients of all phthalates were higher than 0.99 and those of 16 phthalates were higher than 0.999. The limits of detection and the limits of quantification of 15 phthalates were 0.02 and 0.05 mg/kg, meanwhile diallyl phthalate, diisobutyl phthalate, dimethyl phthalate, di‐n‐butyl phthalate, and di(2‐ethylhexyl) phthalate were 0.05 and 0.10 mg/kg, and diisodecyl phthalate and diisononyl phthalate were 0.10 and 0.25 mg/kg. The spiked recoveries were in the range of 76.26–107.76%, and the relative standard deviations were in the range of 1.78–12.10%. Results support this method as an efficient alternative to apply for the simultaneous determination of 22 phthalate esters in common polystyrene food‐contact materials.  相似文献   

2.
A gas chromatography–mass spectrometry assay was developed and validated for the simultaneous determination of phthalates and adipates in human serum. The phthalates and adipates studied were dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzylbutyl phthalate, di‐2‐ethylhexyl phthalate, di‐n‐octyl phthalate, diethyl adipate, dibutyl adipate, diisobutyl adipate, bis(2‐butoxyethyl) adipate and di‐2‐ethylhexyl adipate, with diisooctyl phthalate as internal standard. The extraction and cleaning up procedure was carried out with solid‐phase extraction cartridges containing dimethyl butylamine groups, which showed extraction efficiencies over 88% for each analyte and the internal standard. The calibration curves obtained were linear with correlation coefficients greater than 0.98. For all analytes, the assay gave CV% values for intra‐day precision from 4.9 to 13.3% and mean accuracy values from 91.4 to 108.4%, while inter‐day precision was 5.2–13.4% and mean accuracy 91.0–110.2%. The limits of detection for the assay of phthalates and adipates were in the range 0.7–4.5 ng/mL. The method is simple, sensitive and accurate, and allows for simultaneous determination of nanogram levels of phthalates and adipates in human serum. It was successfully applied to an investigation on the level of phthalates and adipates in a non‐occupationally exposed population.  相似文献   

3.
An ultrasound‐assisted magnetic solid‐phase extraction procedure with chloromethylated polystyrene‐coated Fe3O4 nanospheres as magnetic adsorbents has been developed to determine eight phthalate esters (bis(4‐methyl‐2‐pentyl) phthalate, dipentyl phthalate, dihexyl phthalate, benzyl butyl phthalate, bis(2‐butoxyethyl) phthalate, dicyclohexyl phthalate, di‐n‐octyl phthalate, and dinonyl phthalate) simultaneously in beverage samples, in combination with gas chromatography coupled to tandem mass spectrometry for the first time. Several factors related to magnetic solid‐phase extraction efficiencies, such as amount of adsorbent, extracting time, ionic strength, and desorption conditions were investigated. The enrichment factors of the method for the eight analytes were over 2482. A good linearity was observed in the range of 10–500 ng/L for bis(2‐butoxyethyl) phthalate and 2–500 ng/L for the other phthalate esters with correlation coefficients ranging from 0.9980 to 0.9998. The limits of detection and quantification for the eight phthalate esters were in the range of 0.20–2.90 and 0.67–9.67 ng/L, respectively. The mean recoveries at three spiked levels were 75.8–117.7%, the coefficients of variations were <11.6%. The proposed method was demonstrated to be a simple and efficient technique for the trace analysis of the phthalate esters in beverage samples.  相似文献   

4.
Liquid‐phase microextraction based on gemini‐based supramolecular solvent was successfully applied as a preconcentration step before gas chromatography with mass spectrometry. To eliminate the interferences of gemini surfactant, the analytes were back‐extracted into an immiscible organic solvent in the presence of ultrasonic sound waves. Three phthalate esters (di‐n‐butyl‐, butylbenzyl‐, bis(2‐ethylhexyl)‐, and di‐n‐octyl phthalatic esters) were used as target analytes. The effective parameters on extraction efficiency of the target analytes (i.e., the amount of surfactant and volume of propanol as major components making up the supramolecular solvent, ionic strength, hexane volume, and ultrasound time) were investigated and optimized by a one‐variable‐at‐a‐time method. Under the optimum conditions, the preconcentration factors of the analytes were in the range of 95–182. The linear dynamic range of 0.05–200.00 μg/L with a correlation of determination of (R 2) ≥ 0.9935 was obtained. The proposed method had an excellent limit of detection (S/N = 3) of 0.01 for di‐n‐octyl and 0.02 μg/L for butylbenzyl‐ and di‐n‐butyl‐phthalatic ester. Good relative recoveries in the range of 85.7–105.2% guaranteed the accuracy of the amount of phthalates distinguished in the nonspiked samples.  相似文献   

5.
建立了固相萃取结合气相色谱串联质谱联用仪检测土壤中15种邻苯二甲酸酯残留的方法。样品采用丙酮和石油醚超声提取,取上清液浓缩,上弗罗里硅土固相萃取柱净化,收集洗脱液,定容,以气相色谱串联质谱法分析。该方法在20~2 000 ng/g范围内线性关系良好(r~20.999 0),检出限(S/N=3)为0.12~0.61 ng/g。20,50,200 ng/g 3个添加浓度的15种邻苯二甲酸酯的加标回收率在78.9%~101.8%之间,测定结果的相对标准偏差为0.19%~8.34%(n=5)。该方法准确、灵敏,符合痕量分析的要求,适用于土壤中邻苯二甲酸酯类残留的分析。  相似文献   

6.
Phthalates have been used as plasticisers for several decades in various industry and consumer products. A method was developed for the determination of 13 not commonly monitored phthalates in household dust. The method was based on solvent extraction using sonication, sample clean-up by solid phase extraction (SPE), and analysis using isotope dilution gas chromatography-tandem mass spectrometry (GC/MS/MS). The method was applied to the analysis of dust samples collected using two vacuum sampling techniques from 38 urban Canadian homes: a sample of fresh or ‘active’ dust (FD) collected by technicians and a composite sample taken from the household vacuum cleaner (HD). Spearman rank correlations between HD and FD samples were significant for six phthalates with median concentrations above their method detection limits (MDLs), suggesting that the HD samples provide comparable results with FD samples. Seven phthalates were detected and quantified in a Canada-wide set of 126 household dust samples, among which six phthalates were detected at frequencies higher than 87%, with median (range) concentrations of 1.9 (<0.42–240) (μg/g) for diisohexyl phthalate (DIHxP), 3.8 (<0.16–260) (μg/g) for di-n-heptyl phthalate (DHepP), 6.6 (<1.1–1170) (μg/g) for diisooctyl phthalate (DIOP), 1.1 (<0.12–390) (μg/g) for di-n-octyl phthalate (DOP), 6.3 (<0.16–430) (μg/g) for dinonyl phthalate (DNP), and 1.8 (<0.18–850) (μg/g) for di-n-decyl phthalate (DDP). High detection frequencies and widely scattered concentration levels of these phthalates in this preliminary set of 126 samples suggested a high variability in potential exposure to phthalates in Canadian homes. NIST SRM 2585 (organic contaminants in house dust) was also analysed; eight phthalates were detected, with concentrations ranging from 6.0 μg/g for DOP to 79 μg/g for DIHxP. The results from SRM 2585 may contribute to the certification of phthalate concentration values in this SRM.  相似文献   

7.
A direct analytical method based on spray‐inlet microwave plasma torch tandem mass spectrometry was applied to simultaneously determine 4 phthalate esters (PAEs), namely, benzyl butyl phthalate, diethyl phthalate, dipentyl phthalate, and dodecyl phthalate with extremely high sensitivity in spirits without sample treatment. Among the 4 brands of spirit products, 3 kinds of PAE compounds were directly determined at very low concentrations from 1.30 to 114 ng·g−1. Compared with other online and off‐line methods, the spray‐inlet microwave plasma torch tandem mass spectrometry technique is extremely simple, rapid, sensitive, and high efficient, providing an ideal screening tool for PAEs in spirits.  相似文献   

8.
A simple and rapid method using microextraction by packed sorbent coupled with gas chromatography and mass spectrometry has been developed for the analysis of five phthalates, namely, diethyl phthalate, benzyl‐n‐butyl phthalate, dicyclohexyl phthalate, di‐n‐butyl phthalate, and di‐n‐propyl phthalate, in cold drink and cosmetic samples. The various parameters that influence the microextraction by packed sorbent performance such as extraction cycle (extract–discard), type and amount of solvent, washing solvent, and pH have been studied. The optimal conditions of microextraction using C18 as the packed sorbent were 15 extraction cycles with water as washing solvent and 3 × 10 μL of ethyl acetate as the eluting solvent. Chromatographic separation was also optimized for injection temperature, flow rate, ion source, interface temperature, column temperature gradient and mass spectrometry was evaluated using the scan and selected ion monitoring data acquisition mode. Satisfactory results were obtained in terms of linearity with R2 >0.9992 within the established concentration range. The limit of detection was 0.003–0.015 ng/mL, and the limit of quantification was 0.009–0.049 ng/mL. The recoveries were in the range of 92.35–98.90% for cold drink, 88.23–169.20% for perfume, and 88.90–184.40% for cream. Analysis by microextraction by packed sorbent promises to be a rapid method for the determination of these phthalates in cold drink and cosmetic samples, reducing the amount of sample, solvent, time and cost.  相似文献   

9.
A new procedure is proposed for the analysis of migration test solutions obtained from plastic bottles used in the packaging of edible oils. Ultrasound‐assisted emulsification microextraction with ionic liquids was applied for the preconcentration of six phthalate esters: dimethylphthalate, diethylphthalate, di‐n‐butylphthalate, n‐butylbenzylphthalate, di‐2‐ethylhexylphthalate, and di‐n‐octylphthalate. The enriched ionic liquid was directly analyzed by gas chromatography and mass spectrometry using direct insert microvial thermal desorption. The different factors affecting the microextraction efficiency, such as volume of the extracting phase (30 μL of the ionic liquid) and ultrasound application time (25 s), and the thermal desorption step, such as desorption temperature and time, and gas flow rate, were studied. Under the selected conditions, detection limits for the analytes were in the 0.012–0.18 μg/L range, while recovery assays provided values ranging from 80 to 112%. The use of butyl benzoate as internal standard increased the reproducibility of the analytical procedure. When the release of the six phthalate esters from the tested plastic bottles to liquid simulants was monitored using the optimized procedure, analyte concentrations of between 1.0 and 273 μg/L were detected.  相似文献   

10.
针对室内空气中日益严重的邻苯二甲酸酯类污染,建立了固相萃取柱采样,GC/MS测定室内空气中16种邻苯二甲酸酯类物质的测试方法,可用于评价室内空气质量。  相似文献   

11.
A method for determining a group of phthalate esters in pharmaceutical formulae used in parenteral nutrition samples (with and without vitamins) has been developed. The phthalic acid esters (PAEs) studied were dimethyl phthalate, diethyl phthalate, butyl benzyl phthalate, dibutyl phthalate, di-(2-ethylhexyl) phthalate, and dioctyl phthalate. This group of phthalates was determined by high performance liquid chromatography (HPLC)–electrospray ionization–mass spectrometry, working in positive ion mode. The phthalates analyzed were extracted from the sample using hexane and sodium hydroxide. The hexane was then evaporated, and the compounds were redissolved in acetonitrile. The compounds were separated by HPLC working in gradient mode with acetonitrile-ultrapure water starting from 5% to 75% acetonitrile in 5 min, followed by isocratic elution for 27 min. Standard calibration curves were linear for all the analytes over the concentration range 10–250 μg L−1. The method was precise (with RSD from 3.3% to 12.9%) and sensitive. The proposed analytical method has been applied to the analysis of these compounds in different pharmaceutical formulae (with different compositions) for parenteral nutrition samples in order to check the presence of phthalates and determine their concentration.  相似文献   

12.
A quick, easy, cheap, effective, rugged, and safe procedure was designed to extract pesticide residues from fruits and vegetables with a high percentage of water. It has not been used extensively for the extraction of phthalate esters from sediments, soils, and sludges. In this work, this procedure was combined with gas chromatography with mass spectrometry to determine 16 selected phthalate esters in soil. The extraction efficiency of the samples was improved by ultrasonic extraction and dissolution of the soil samples in ultra‐pure water, which promoted the dispersion of the samples. Furthermore, we have simplified the extraction step and reduced the risk of organic solvent contamination by minimizing the use of organic solvents. Different extraction solvents and clean‐up adsorbents were compared to optimize the procedure. Dichloromethane/n‐hexane (1:1, v/v) and n‐hexane/acetone (1:1, v/v) were selected as the extractants from the six extraction solvents tested. C18/primary secondary amine (1:1, m/m) was selected as the sorbent from the five clean‐up adsorbents tested. The recoveries from the spiked soils ranged from 70.00 to 117.90% with relative standard deviation values of 0.67–4.62%. The proposed approach was satisfactorily applied for the determination of phthalate esters in 12 contaminated soil samples.  相似文献   

13.
The employment of chemical weapons by rogue states and/or terrorist organizations is an ongoing concern in the United States. The quantitative analysis of nerve agents must be rapid and reliable for use in the private and public sectors. Current methods describe a tedious and time‐consuming derivatization for gas chromatography–mass spectrometry and liquid chromatography in tandem with mass spectrometry. Two solid‐phase extraction (SPE) techniques for the analysis of glyphosate and methylphosphonic acid are described with the utilization of isotopically enriched analytes for quantitation via atmospheric pressure chemical ionization–quadrupole time‐of‐flight mass spectrometry (APCI‐Q‐TOF‐MS) that does not require derivatization. Solid‐phase extraction‐isotope dilution mass spectrometry (SPE‐IDMS) involves pre‐equilibration of a naturally occurring sample with an isotopically enriched standard. The second extraction method, i‐Spike, involves loading an isotopically enriched standard onto the SPE column before the naturally occurring sample. The sample and the spike are then co‐eluted from the column enabling precise and accurate quantitation via IDMS. The SPE methods in conjunction with IDMS eliminate concerns of incomplete elution, matrix and sorbent effects, and MS drift. For accurate quantitation with IDMS, the isotopic contribution of all atoms in the target molecule must be statistically taken into account. This paper describes two newly developed sample preparation techniques for the analysis of nerve agent surrogates in drinking water as well as statistical probability analysis for proper molecular IDMS. The methods described in this paper demonstrate accurate molecular IDMS using APCI‐Q‐TOF‐MS with limits of quantitation as low as 0.400 mg/kg for glyphosate and 0.031 mg/kg for methylphosphonic acid. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In the following work, a new method for the analysis of the phthalate monoesters in human urine was reported. Phthalate monoesters are metabolites generated as a result of phthalate exposure. In compliance with the dictates of Green Analytical Chemistry, a rapid and simple protocol was developed and optimized for the quantification of phthalate monoesters (i.e., monoethyl phthalate, monoisobutyl phthalate, mono‐n‐butyl phthalate, mono‐(2‐ethylhexyl) phthalate, mono‐n‐octyl phthalate, monocyclohexyl phthalate, mono‐isononyl phthalate) in human urine, which entails preceding derivatization with methyl chloroformate combined with the use of commercial solid phase microextraction and the analysis by gas chromatography‐triple quadrupole mass spectrometry. The affinity of the derivatized analytes toward five commercial coatings was evaluated, and in terms of analyte extraction, the best results were reached with the use of the divinylbenzene/carboxen/polydimethylsiloxane fiber. The multivariate approach of experimental design was used to seek for the best working conditions of the derivatization reaction and the solid phase microextraction, thus obtaining the optimum response values. The proposed method was validated according to the guidelines issued by the Food and Drug Administration achieving satisfactory values in terms of linearity, sensitivity, matrix effect, intra‐ and inter‐day accuracy, and precision.  相似文献   

15.
Dispersive liquid–liquid microextraction method was developed for the determination of the amount of phthalate esters in bottled drinking water samples and dispersive liquid–liquid microextraction samples were analyzed by GC–MS. Various experimental conditions influencing the extraction were optimized. Under the optimized conditions, very good linearity was observed for all analytes in a range between 0.05 and 150 μg/L with coefficient of determination (R2) between 0.995 and 0.999. The LODs based on S/N = 3 were 0.005–0.22 μg/L. The reproducibility of dispersive liquid–liquid microextraction was evaluated. The RSDs were 1.3–5.2% (n = 3). The concentrations of phthalates were determined in bottled samples available in half shell. To understand the leaching profile of these phthalates from bottled water, bottles were exposed to direct sunlight during summer (temperature from 34–57°C) and sampled at different intervals. Result showed that the proposed dispersive liquid–liquid microextraction is suitable for rapid determination of phthalates in bottled water and di‐n‐butyl, butyl benzyl, and bis‐2‐ethylhexyl phthalate compounds leaching from bottles up to 36 h. Thereafter, degradation of phthalates was observed.  相似文献   

16.
污水中6种邻苯二甲酸酯的测定   总被引:4,自引:2,他引:4  
采用同时蒸馏萃取法提取水样中的邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二正辛酯、邻苯二甲酸二(2-乙基己基)酯6种邻苯二甲酸酯,用GC-MS进行定性和定量分析.对pH值、盐度和提取时间等影响因素进行优化.当pH值为2.0,NaCl加入量为5.0 g/L和提取时间为2.5 h时,目标化合物具有较好的回收率.优化条件下6种邻苯二甲酸酯的样品加标回收率为98%~105%,相对标准偏差为1.8%~5.6%,方法检出限为8.0~200.0 ng/L.方法成功应用于城市污水中该类化合物的监测.  相似文献   

17.
In this work, a porous carbon derived from amino‐functionalized material of Institut Lavoisier (C‐NH2‐MIL‐125) was prepared and coated onto a stainless‐steel wire through sol–gel technique. The coated fiber was used for the solid‐phase microextraction of trace levels of phthalate esters (diallyl phthalate, di‐iso‐butyl ortho‐phthalate, di‐n‐butyl ortho‐phthalate, benzyl‐n‐butyl ortho‐phthalate, and bis(2‐ethylhexy) ortho‐phthalate) from tea beverage samples before gas chromatography with mass spectrometric analysis. Several experimental parameters that could influence the extraction efficiency such as extraction time, extraction temperature, sample pH, sample salinity, stirring rate, desorption temperature and desorption time, were investigated. Under the optimal conditions, the linearity existed in the range of 0.05–30.00 μg/L for green jasmine tea beverage samples, and 0.10–30.00 μg/L for honey jasmine tea beverage samples, with the correlation coefficients (r) ranging from 0.9939 to 0.9981. The limits of detection of the analytes for the method were 2.0–3.0 ng/L for green jasmine tea beverage sample, and 4.0–5.0 ng/L for honey jasmine tea beverage sample, depending on the compounds. The recoveries of the analytes for the spiked samples were in the range of 82.0–106.0%, and the precision, expressed as the relative standard deviations, was less than 11.1%.  相似文献   

18.
A novel liquid–liquid microextraction method, namely, solvent‐vapor‐assisted liquid–liquid microextraction for the determination of dimethyl phthalate, diethyl phthalate, dibutyl phthalate and bis(2‐ethylhexyl) phthalate in the aqueous samples using gas chromatography with mass spectrometry was developed. In the proposed method, extracting solvent was heated, and solvent vapor as the extracting phase was injected into the sample solution. As a result of the low temperature of the sample solution and higher density of the extracting phase than the aqueous medium, solvent vapor was condensed and an organic‐phase drop formed in the bottom of sample tube. Because of the gas status of the extracting solvent, the surface area between the extracting solvent and the aqueous sample was remarkably high. Under the optimized conditions, tetrachloride carbon was used as an extracting solvent. The method shows high coefficient of determination (R 2) values in the range of 0.5–200 and 1.0–200 ng/mL for the target analytes. Enrichment factors and limits of detection for the studied phthalates are obtained in the ranges of 2800–3000 and 0.15–0.3 ng/mL, respectively. Recoveries and relative standard deviations were in the range of 80.0–100.0 and 2.2–7.8%, respectively. The proposed method successfully used for analysis of several aqueous samples.  相似文献   

19.
A microdispersive solid‐phase extraction method has been developed using multiwalled carbon nanotubes of 110–170 nm diameter and 5–9 μm length for the extraction of a group of nine phthalic acid esters (i.e., bis(2‐methoxyethyl) phthalate, bis‐2‐ethoxyethyl phthalate, dipropyl phthalate, butylbenzyl phthalate, bis‐2‐n‐butoxyethyl phthalate, bis‐isopentyl phthalate, bis‐n‐pentyl phthalate, dicyclohexyl phthalate, and di‐n‐octyl phthalate) from tap water as well as from different beverages commercialized in plastic bottles (mineral water, lemon‐ and apple‐flavored mineral water, and an isotonic drink). Determination was carried out by high‐performance liquid chromatography coupled to mass spectrometry. The extraction procedure was optimized following a step‐by‐step approach, being the optimum extraction conditions: 50 mL of each sample at pH 6.0, 80 mg of sorbent, and 25 mL of acetonitrile as elution solvent. To validate the methodology, matrix‐matched calibration and a recovery study were developed, obtaining determination coefficients >0.9906 and absolute recovery values between 70 and 117% (with relative standard deviations < 17%) in all cases. The limits of quantification of the method were between 0.173 and 1.45 μg/L. After the evaluation of the matrix effects, real samples were also analyzed, finding butylbenzyl phthalate in all samples (except in apple‐flavored mineral water), though at concentrations below its limit of quantification of the method.  相似文献   

20.
Ding‐Zhi‐Xiao‐Wan (DZXW) is a famous traditional Chinese medicine (TCM) formula, which is composed of four herbs, Ginseng Radix, Poria, Polygala Radix and Acori Tatarinowii Rhizoma. It has been popularly used for the treatment of emotional disease, like Alzheimer's disease, Parkinson's disease, depression, anxiety, forgetfulness and neurasthenia. In this research, a high‐performance liquid chromatography coupled with ion‐trap tandem mass spectrometry (HPLC‐IT‐MSn) method along with a high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry (HPLC‐Q‐TOF‐MS) method in negative ion mode was established to investigate the major constitutions in DZXW. The extracts were prepared by ultra‐sonication in ethyl acetate, n‐butanol, 95% ethanol and deionized water sequentially as well as in deionized water directly. A Kromasil C18 column was used to separate the extracts of DZXW. Acetonitrile and 0.1% aqueous formic acid (V/V) were used as the mobile phase. A total of 64 components were characterized, including 16 triterpenoids, 14 Polygala saponins, 10 oligosaccharide esters, 6 sucrose esters, 2 xanthone C‐glycosides and 16 ginsenosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号