首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Droplet sizes of oil/water (O/W) nanoemulsions prepared by the phase inversion temperature (PIT) method, in the water/C16E6/mineral oil system, have been compared with those given by a theoretical droplet model, which predicts a minimum droplet size. The results show that, when the phase inversion was started from either a single-phase microemulsion (D) or a two-phase W+D equilibrium, the resulting droplet sizes were close to those predicted by the model, whereas, when emulsification was started from W+D+O or from W+D+Lalpha (Lalpha = lamellar liquid crystal) equilibria, the difference between the measured and predicted values was much higher. The structural changes produced during the phase inversion process have been investigated by the 1H-PFGSE-NMR technique, monitoring the self-diffusion coefficients for each component as a function of temperature. The results have confirmed the transition from a bicontinuous D microemulsion at the hydrophile-lipophile balance (HLB) temperature to oil nanodroplet dispersion in water when it is cooled to lower temperatures.  相似文献   

2.
自行设计合成了新颖的苄胺型双链表面活性剂3,4-双十二烷氧基苄胺(DDOBA). 利用DDOBA/正丁醇/正庚烷/甲酸/HAuCl4·4H2O自发形成的水/油(W/O)型微乳液作为微反应器, 通过微波辐射下的甲酸还原法成功制备了DDOBA保护的憎水性金纳米粒子, 并通过紫外-可见(UV-Vis)光谱、透射电镜(TEM)、高分辨透射电镜(HR-TEM)和X射线衍射(XRD)等方法进行了表征和分析. 结果显示, DDOBA既可参与形成稳定的W/O型(油包水型)微乳液, 又可作为金纳米粒子的良好保护剂. 在合适的微乳液体系组成范围内, 用本实验方法可以获得高单分散性的憎水性金纳米粒子, 并能在空气/水界面上自动形成大面积短程有序的纳米金二维自组装膜.  相似文献   

3.

Phase diagrams of the n‐butanol/n‐octane/water/(12‐3‐12,2Br?1) system were determined, where n‐octane usually represents oil (O), 12‐3‐12,2Br?1 is a gemini cationic surfactant trimethylene‐1,3‐bis(dodecyldimethyl ammonium bromide) abbreviated as S, and n‐butanol is a co‐surfactant written as A. Effects of the weight ratio of gemini surfactant to cosurfactant, S/A, and of temperature on the phase behavior were studied. The microemulsion structures including O/W, bi‐continuous (B.C.), W/O, and liquid crystal were determined by the conductivity method and polarization measurement. Experimental results show that the gemini surfactant, used facilitates the formation of microemulsions compared with its corresponding monomeric surfactant, n‐dodecyl trimethylammonium bromide (DTAB). When S/A=1/1, and the total concentration of gemini surfactant and alcohol is 20–40%, microemulsions with higher water content can form in a wider region. When the temperature increases, the size and position of each type of microemulsion region changes notably.  相似文献   

4.
Abstract

In this study, we are introducing a method that can effectively stabilize antioxidants in water‐in‐oil‐in‐water (W/O/W) double emulsions. Preliminarily, stable W/O/W double emulsions were produced by manipulating the characteristics of internal aqueous phase via two‐stage emulsification, resulting consequently in the formation of fine internal water droplets in the dispersed oil droplets. From conductivity measurements that can determine the elution amount of internal aqueous phase, it was confirmed that the double emulsion stability could be improved by treating the internal aqueous phase with a hydroxypropyl‐beta‐cyclodextrin. In this study, kojic acid, 5‐hydroxy‐2‐(hydroxymethyl)‐4‐pyrone was selected as a model antioxidant. The stabilization of kojic acid was attempted by locating it in the internal water droplets of the stable W/O/W double emulsions. The stability of kojic acid in the double emulsion system could be maintained at 90% for 10 weeks at high temperature. We believe that these stable W/O/W double emulsions could be used meaningfully as a carrier for many unstable antioxidants.  相似文献   

5.
微乳液中单分散银纳米颗粒的制备及抗磨性能   总被引:3,自引:0,他引:3  
采用水/液体石蜡/Span 80-Tween 80/正丁醇微乳液体系, 制备了具有良好单分散性的Ag纳米颗粒. 通过X射线粉末衍射仪、透射电子显微镜、傅立叶变换红外光谱仪和热分析仪表征了Ag纳米颗粒的结构、形貌、粒径大小及分布、表面键合性质和热性能. 结果表明, 所制备的Ag纳米颗粒具有立方晶型结构, m(Span 80)∶m(Tween 80)=7∶3时, 粒径分布呈单分散性, 平均粒径约为6 nm. 在四球长时抗磨损试验机上考察了分散于液体石蜡中Ag纳米颗粒的抗磨性能. 实验结果表明, Ag纳米颗粒具有良好的抗磨性, 且能显著提高基础油的承载能力.  相似文献   

6.
Nanometer-sized indium oxide (In(2)O(3)) particles have been prepared by chemical reaction of inorganic indium compounds and ammonia gas in a reverse microemulsion system consisting of water, Triton X-100 (surfactant), n-heptanol (co-surfactant), and n-octane (oil). Precursor hydroxides precipitated in the droplets of water-in-oil (W/O) microemulsion were calcined at different temperatures to form indium oxide powder. The factors affecting the particle size have been discussed; the calcination temperature is considered to be the important factor for controlling the size. In(2)O(3) calcined at 400 degrees C had a spherical form and a narrow size distribution. Calcination at 800 degrees C led to the formation of particles not only of irregular shape, but also of a wide size distribution. With the increase in calcination temperature from 400 to 800 degrees C, the average size of the particles grew from 7 to about 40 nm. The species of reactants used in the aqueous phase had a significant effect on the size of the particles. The average diameter of In(2)O(3) particles derived from reactant InCl(3) was 7 nm; that of particles derived from In(NO(3))(3) was 15 nm. The In(2)O(3) nanoparticles were characterized by transmission electron microscopy and X-ray diffraction. The phase behavior of the microemulsions is discussed.  相似文献   

7.
Perrin  P.  Monfreux  N.  Dufour  A. L.  Lafuma  F. 《Colloid and polymer science》1998,276(10):945-948
Highly hydrophobically modified (with n-dodecylamide chain) linear poly(acrylic acid)s (HHMPAAH) and poly(sodium acrylate)s (HHMPAANa) with various degrees of grafting (τ) were synthesized and used as emulsifiers of the n-dodecane/water system. The type of emulsion, oil in water (O/W) or water in oil (W/O), was investigated as a function of the polymer chemical structure (τ, salt or acid form of the copolymer) and aqueous phase electrolyte concentration (NaNO3). Increasing τ and/or salt concentration was found to favor the formation of inverse emulsions. Direct liquid–liquid dispersions are more likely to form with poly(sodium acrylate)s than with poly(acrylic acid)s. Hence, field variables such as τ, pH and ionic strength are relevant parameters to control emulsion type. Moreover, a balanced polyelectrolyte neither soluble in oil nor in water was synthesized for the first time. With this original emulsifier, the dispersion type was found to change from O/W to W/O with polymer salting out. The work provides convenient model system for fundamental studies of polymer conformation at liquid–liquid interfaces. Received: 31 March 1998 Accepted: 30 April 1998  相似文献   

8.
9.
The water‐in‐ionic liquid (W/IL) microemulsion has been used to prepare the tetragonal ZrO2 nanoparticles. A number of anomalous spherical dispersed particles have been obtained. However, the ZrO2 nanoparticles synthesized using traditional water‐in‐xylene (W/O) microemulsion show an obvious fusion trace, indicating that the congregation takes place when the precursor was calcined. High thermostable ionic liquid may act as a protector to prevent the congregation of product. The samples are further characterized by XRD, SEM, TEM, and UV‐Vis spectroscopy. The results suggest that the obtained product has high degree of crystallinity and a narrow size distribution (15–40 nm). The XRD pattern has indicated a typical tetragonal crystal structure of ZrO2. Moreover, the UV‐Vis absorption of the samples also shows the otential advantage in an application of screening ultraviolet radiation.  相似文献   

10.
ABSTRACT

W/O/W and O/W/O multiple emulsions have been found in systems consisting of water, light mineral oil, and two nonionic surfactants (Span 80 and Tween 20).No specific order of addition of the components or pre-mixing was followed. Following gentle agitation at 25°, 35° and 45° for 48?hours, W/O/W emulsions were found at water contents above 30%, while 0/W/O emulsions generally appeared below 60% water.W/0 and 0/W emulsions, micellar phases and liquid crystalline phases were also observed at various compositions. The multiple emulsion regions decreased in size as temperature increased and the areas and positions of the other phases were also temperature dependent.  相似文献   

11.
The catalytic conversion of methanol to dimethylether(DME)was studied over CuO/Al2O3,ZnO/Al2O3and ZnOCuO/Al2O3nanocatalysts prepared in presence or absence of ultrasonic irradiation.The catalysts were characterized by X-ray diffraction(XRD),surface characterization method(BET),scanning electron microscope(SEM),H2-temperature programmed reduction(H2-TPR)and temperature programmed desorption of ammonia(NH3-TPD).The experimental results show that during catalytic dehydration of methanol to dimethylether,the activities of the CuO/Al2O3,ZnO/Al2O3and ZnO-CuO/Al2O3catalysts prepared using ultrasonic treatment are much higher than those prepared in absence of ultrasonication.SEM shows that the use of ultrasonication results in much smaller nanoparticles.BET and XRD show that the ultrasonication increases the surface area and pore volume of the catalysts.H2-TPR profiles indicated that reducibility of the sonicated nanocatalysts is carried out at lower temperatures.NH3-TPD shows that ultrasound irradiation has enhanced the acidity of the nanocatalyst and hence enhanced catalytic performance for DME formation.  相似文献   

12.
The emulsification processes, during which acylglycerols/zinc stearate emulsifier, water, and oil phase formed ternary systems, such as water-in-oil (W/O) emulsions, oil-in-water (O/W) dispersions, and unstable oil-water mixtures, were investigated in order to characterize the progressive transformations of the dispersed systems. The type, structure, and phase transitions of the systems were found to be determined by temperature and water phase content. Crystallization of the emulsifier caused the destabilization and subsequent phase inversion of the emulsions studied, at a temperature of 60-61 degrees C. The observed destabilization was temporary and led, at lower temperature, to W/O emulsions, "O/W + O" systems, or O/W dispersions, depending on the water content. Simultaneous emulsification and cooling of 20-50 wt % water systems resulted in the formation of stable W/O emulsions that contained a number of large water droplets with dispersed oil globules inside them ("W/O + O/W/O"). In water-rich systems (60-80 wt % of water), crystallization of the emulsifier was found to influence the formation of crystalline vesicle structures that coexisted, in the external water phase, with globules of crystallized oil phase. Results of calorimetric, rheological, and light scattering experiments, for the O/W dispersions obtained, indicate the possible transition of a monostearoylglycerol-based alpha-crystalline gel phase to a coagel state, in these multicomponent systems.  相似文献   

13.
The ternary phase diagram for N-[3-lauryloxy-2-hydroxypropyl]-L-arginine L-glutamate (C12HEA-Glu), a new amino acid-type surfactant, /oleic acid (OA)/water system was established. The liquid crystal and gel complex formations between C12HEA-Glu and OA were applied to a preparation of water-in-oil (W/O) emulsions. Stable W/O emulsions containing liquid paraffin (LP) as the oil and a mixture of C12HEA-Glu and OA as the emulsifier were formed. The preparation of stable W/O emulsions containing 85 wt% water phase was also possible, in which water droplets would be polygonally transformed and closely packed, since the maximum percentage of inner phase is 74% assuming uniformly spherical droplets. Water droplets would be taken into the liquid crystalline phase (or the gel complex) and the immovable water droplets would stabilize the W/O emulsion system. The viscosity of emulsions abruptly increased above the 75 wt% water phase (dispersed phase). The stability of W/O emulsions with a lower weight ratio of OA to C12HEA-Glu and a higher ratio of water phase was greater. This unusual phenomenon may be related to the formation of a liquid crystalline phase between C12HEA-Glu and OA, and the stability of the liquid crystal at a lower ratio of oil (continuous phase). W/O and oil-in-water (O/W) emulsions containing LP were selectively prepared using a mixture of C12HEA-Glu and OA since the desirable hydrophile-lipophile balance (HLB) number for the emulsification was obtainable by mixing the two emulsifiers.  相似文献   

14.
以油页岩灰渣提取的硅酸钠为原料,采用溶胶-凝胶法并结合多种纳米粉体分散技术,制备了分散性好、粒径均一的纳米SiO2,其平均粒径约为10 nm。 制备过程中聚乙二醇(PEG)的加入能够有效的降低纳米SiO2的表面能,减少粒子的团聚, PEG的最佳浓度为3.0%;超声振荡的空化作用所释放出的巨大冲击波和微射流,能有效地击散纳米SiO2团聚体,其最佳超声时间为0.5 h;硅酸湿凝胶与正丁醇共沸蒸馏能有效脱除凝胶中的水,防止干燥过程中颗粒间硬团聚。  相似文献   

15.
For many decades, the solubilization of long-chain triglycerides in water has been a challenge. A new class of amphiphiles has been created to overcome this solubilization problem. The so-called "extended" surfactants contain a hydrophilic-lipophilic linker to reduce the contrast between the surfactant-water and surfactant-oil interfaces. In the present contribution, the effects of different anions and cations on the phase behavior of a mixture containing an extended surfactant (X-AES), a hydrotrope (sodium xylene sulfonate, SXS), water, and rapeseed oil were determined as a function of temperature. Nanoemulsions were obtained and characterized by conductivity measurements, light scattering, and optical microscopy. All salting-out salts show a transition from a clear region (O/W nanoemulsion), to a lamellar liquid crystalline phase region, a clear phase (bicontinuous L(3)), and again to a lamellar liquid crystalline phase region with increasing temperature. For the phase diagrams with NaSCN and Na(2)SO(4), only one clear region (O/W nanoemulsion) was observed, which turns into a lamellar phase region at elevated temperatures. Furthermore, the stability of the nanoemulsions was investigated by time-dependent measurements: the visual observation of phase separation, droplet size by dynamic light scattering (DLS), and optical microscopy. The mechanism of the different phase transitions is also discussed.  相似文献   

16.
研究了聚氧乙烯(PEO)与SiO2纳米颗粒对水/二甲苯体系Pickering乳液的协同稳定作用. 实验发现,PEO的存在减小了乳液液滴的平均直径,抑制了乳液的相反转,有效阻止了乳液的熟化,使乳液具有更好的稳定性. 进一步对纳米颗粒膜的流变性质进行研究,结果表明,PEO高分子促进了纳米颗粒形成更大尺寸的聚集结构,提高了其在界面上的吸附性,增强了颗粒膜的力学性能,在较小颗粒用量条件下使得Gibbs稳定性判据得到满足.  相似文献   

17.
A metal ion‐imprinted microsphere was prepared by surface molecular template polymerization. Trimethylolpropane trimethacrylate (TRIM), zinc ions, 1,12‐dodecanediol‐O, O′‐diphenyl phosphonic acid (DDDPA) were used as a crosslinking agent, an imprint molecule, and a functional host molecule. The Zn(II)‐imprinted microspheres, which are spherically well‐defined particles, were prepared by using water‐in‐oil‐in‐water (W/O/W) multiple emulsions. The combination of TRIM and DDDPA serves to align the recognition sites resulting in better template sites produced on the polymer surface. We firstly conducted diagnostic zinc‐ and copper‐ion adsorption tests with the Zn(II)‐imprinted and unimprinted microspheres in order to make an assessment on the effectiveness of the molecular imprinting technique. Further, the metal‐imprinted microspheres were applied to the column operation. The separation and recovery of metals were carried out by an adsorption column packed with the Zn(II)‐imprinted microspheres. This performance was compared to that of commercial chelating resins that possess similar phosphoric functional groups. The Zn(II)‐imprinted polymer shows an extremely high selectivity to the imprinted zinc ions compared to that of the commercial chelating resin. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 689–696, 2000  相似文献   

18.
通过催化剂将CO转化为无毒气体仍然是目前减少CO污染的主要手段.随着纳米技术的快速发展,纳米催化剂因其在催化反应中呈现出的独特结构效应(如形貌效应、尺寸效应等)而受到人们的广泛关注.已有大量研究表明,纳米Co3O4作为一种非贵金属氧化物催化剂具有强烈的催化形貌效应,展现出优异的CO低温催化活性.因此,通过合理的设计来调控催化剂粒子的形貌,从而进一步改善催化剂的性能已成为近年来催化剂领域的重要研究方向.对于Co3O4纳米催化剂的可控制备,水热法具有反应温和、操作简便和产品形貌易控等特点.早期的研究主要围绕于Co3O4形貌的可控合成以及不同形貌Co3O4催化剂对其催化活性产生的影响,较少有对其形貌形成机制的报道.特别是在水热反应中,系统研究各反应参数对催化剂各异形貌的形成影响鲜有报道.
  本文在前人的研究基础上,重点研究了水热反应过程中各主要反应参数对产品形貌控制的影响,绘制了一副不同形貌Co3O4材料的合成过程图,并研究了Co3O4纳米催化剂催化CO氧化的形貌效应.通过水热法先成功合成了三种不同形貌(纳米棒、纳米片和纳米立方)的碱式碳酸钴纳米粒子,然后将其焙烧得到了Co3O4纳米粒子.采用扫描电子显微镜(SEM),透射电子显微镜(TEM), X射线粉末衍射仪(XRD),程序升温还原(H2-TPR和CO-TPR),氮气吸附-脱附比表面积测试(BET),氧气程序升温脱附(O2-TPD), X射线光电子能谱(XPS)等表征手段研究了不同反应参数对纳米碱式碳酸钴前驱体形貌形成的作用和各异形貌Co3O4纳米粒子在催化CO氧化反应中催化性能的差异及原因.
  结果表明, Co3O4较好地继承了碱式碳酸钴的形貌,在较低温度条件下(≤140°C),钴源(CoCl2或Co(NO3)2)是影响前驱体形貌的关键因素,反应时间只对粒子的尺寸产生较大影响.低温下, CoCl2作为钴源易诱导生产纳米棒状碱式碳酸钴,而Co(NO3)2则有利于纳米片状生成.当温度高于140°C后,无论何种钴源,最终均制得纳米立方体.表面活性剂CTAB对前驱体的均一性和粒子的分散性产生重要影响,加入CTAB后得到的产品尺寸更均一,形貌更加规整.对比于其他两种形貌的样品, Co3O4纳米片显示出更好的CO催化氧化活性.
   XPS结果表明,各形貌Co3O4纳米材料的表面组成存在明显差异,活性物种Co3+含量的不同是影响催化活性差异的重要原因. Co3O4纳米片具有更多的Co3+活性位,立方纳米Co3O4表面吸附氧含量较高, Co3O4纳米棒则暴露出相对更多的Co2+.因此,在三种形貌催化剂上CO氧化反应中, Co3O4纳米片表现出最优的催化活性,纳米立方次之,而纳米棒最差. H2-TPR, CO-TPR和O2-TPD等结果也表明, Co3O4纳米片拥有更强的还原性能和脱附氧能力,其次是纳米立方Co3O4.这与XPS结果一致,证实了不同形貌Co3O4纳米催化剂上暴露活性位的数量和表面氧物种的不同是造成彼此间催化CO氧化活性差异的重要原因.此外,通过稳定性测试发现Co3O4纳米片具有较高的催化稳定性,在水蒸气存在的情况下Co3O4纳米片逐渐失活,但随后在干燥条件下其催化活性又逐渐得到恢复.  相似文献   

19.
纳米(NH4)3PMo6W6O40的室温固相合成及形成机理   总被引:3,自引:0,他引:3  
以H3PMo6W6O40•23H2O和(NH4)2C2O4•H2O为原料,采用室温固相反应合成出(NH4)3PMo6W6O40•6H2O产物,用元素分析、IR、UV-Vis、XRD、TEM、TG-DTA、BET等手段确定其组成、结构和性能.结果表明,产物为纳米粒子,平均粒径为10 nm.纳米粒子保持着杂多阴离子的Keggin特征结构,比表面积为167.6 m2•g-1,且在465 ℃以下具有良好的热稳定性.反应中反应热能、结晶水和生成物H2C2O4•2H2O对形成小粒径的(NH4)3PMo6W6O40纳米粒子起关键作用.  相似文献   

20.
Water-in-oil-in-water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well-known problem for liquid oil-based double emulsions. The influence of network crystallization in the oil phase of W/O/W globules was evaluated by NMR and laser light scattering experiments on both a liquid oil-based double emulsion and a solid fat-based double emulsion. Water transport was assessed by low-resolution NMR diffusometry and by an osmotically induced swelling or shrinking experiment, whereas manganese ion permeation was followed by means of T2-relaxometry. The solid fat-based W/O/W globules contained a crystal network with about 80% solid fat. This W/O/W emulsion showed a reduced molecular water exchange and a slower manganese ion influx in the considered time frame, whereas its globule size remained stable under the applied osmotic gradients. The reduced permeability of the oil phase is assumed to be caused by the increased tortuosity of the diffusive path imposed by the crystal network. This solid network also provided mechanical strength to the W/O/W globules to counteract the applied osmotic forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号